- Operating |
- Systems: 1
Internals
and Design -

|
g
Principles
| |

|

J
|
T

Chapter 1
Computer System
Overview

Ninth Edition
By William Stallings

Operating System

m Exploits the hardware resources of one or more
pProcessors

m Provides a set of services to system users

m Manages secondary memory and I/0O devices

- Basic Elements

1/0
Processor Modules
Main S)]rgstem
Memory ue y

';‘ﬁ:) = r v
e :
b 3
Co» (e 0
iiad Loy
i o L4 :
: o # s : > e el
Y v 4 ;.‘ W e
e N % i :;t
pe 3 3 g

Controls the Performs the
operation of the data processing
computer functions

Referred to as
the Central
Processing Unit

©329)

Main Memory

mStores data and programs

m Typically volatile

m Contents of the memory 1s lost when
the computer is shut down

mReferred to as real memory or
primary memory

~1/0 Modules

_

Move data
between the
computer and
1ts external
environment

~

-

2
Secondary

memory devices
(e.g. disks)

-

Communications
equipment

Terminals

System Bus

mProvides for
communication among

Processors, main memory,
and I/0 modules

CPU

PC MAR
IR MBR
I/0 AR
Exec\{tion
__unit__/ I/0 BR

I/0 Module

Buffers

System
Bus

PC

MAR =
MBR =
I/O AR =
I/O BR =

Main Memory

Instruction

Instruction

o0 0=

Instruction

Data
Data
Data
Data

Program counter

Instruction register

Memory address register
Memory buffer register
Input/output address register
Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

- N

Microprocessor

mInvention that brought about desktop
and handheld computing

m Contains a processor on a single chip
mFastest general purpose processors
m Multiprocessors

mEach chip (socket) contains multiple
processors (cores)

Graphical Processing
Units (GPU'’s)

m Provide efficient computation on arrays of
data using Single-Instruction Multiple Data
(SIMD) techniques pioneered 1n
supercomputers

m No longer used just for rendering advanced
graphics
m Also used for general numerical processing

m Physics simulations for games
m Computations on large spreadsheets

Digital S1gnal Processors
(DSPs)

m Deal with streaming signals such as audio or
video

m Used to be embedded 1in I/0O devices like
modems

m Are now becoming first-class computational
devices, especially 1n handhelds

m Encoding/decoding speech and video
(codecs)

m Provide support for encryption and security

Tensor Processing Units

~ (TPUs)

Introduced in 2016 because of
the increase in the amount of
deep learning performed in
industry.

TPUs are optimized to perform
fast, bulky matrix multiplication.

Good for large models that will
train for weeks or months.

Companies Developing Deep Learning Chips

Company Ownership HQ Story

NVIDIA Public United States Current market leader using GPU based deep learning
Google Public United States Custom designed TPU deployed in Google Cloud
Intel Public United States Nervana based chip to be released late 2017
AMD Public United States GPU based deep learning

Qualcomm Public United States Developing DL silicon for mobile

Cerebras Private United States Ex-AMD team backed by Benchmark Capital
Groq Private United States Ex-Google TPU team backed by Social Capital
KnuEdge Private United States Headed by former NASA CTO

Mythic Private United States In-memory inference for loT backed by DFJ

Thinci Private United States Computer vision / auto focus

Wave Computing Private United States DL server with custom chip. In customer trials
GraphCore Private United Kingdom UK startup backed by top Al researchers

Bitmain Private China Top maker of Bitcoin mining chips

Cambricon Private China China's state-backed startup with a $1B valuation
Horizon Robotics Private China Ex-Baidu team. Embedded / computer vision focus
Tenstorrent Private Canada Toronto based chip startup

Source: ARK Investment Management LLC | ark-invest.com

System on a Chip
- (SeC)

m'To satisfy the requirements of handheld
devices, the classic microprocessor 1s
giving way to the SoC

m Other components of the system, such as DSPs,
GPUs, I/0 devices (such as codecs and radios)
and main memory, in addition to the
CPUs and caches, are on the same chip

Instruction Execution

m A program consists of a set of instructions
stored 1n memory

Processor reads
Processor executes

each instruction

(fetches) instructions
from memory

Two steps

Fetch Stage Execute Stage

(START ’—‘

Fetch Next
Instruction

Execute
Instruction

Figure 1.2 Basic Instruction Cycle

Instruction Fetch
and Execute

m The processor fetches an instruction from
memory

m Typically the program counter (PC) holds the
address of the next instruction to be fetched

= PC 1s incremented after each fetch

Instruction Register (TR)

m Processor interprets the
instruction and performs
required action:

Fetched 1nstruction 1s
loaded 1nto Instruction
Register (IR)
m Processor-memory
m Processor-1/0

m Data processing
m Control

| SO WINE

https://www.wikihow.com/Count-in-Binary

Multiples of bytes VeTE
»10 kilo k 1024 Value Metric Value IEC JEDEC

,20 mega M 1048576 1000 kB kilobyte |1024 KIiB kibibyte KB kilobyte
30 giga G 107374182 1000< MB megabyte | 1024= MIiB mebibyte MB megabyte

1000° GB gigabyte || 1024° GiB gibibyte GB gigabyte
,40 tera T 1099511627776

1000* TB terabyte
1000° PB petabyte
1000° EB exabyte
10007 ZB zettabyte
1000% YB yottabyte

1024* TIB tebibyte
1024° PiB pebibyte
1024° EiB exbibyte
10247 ZiB zebibyte
1024 YiB yobibyte

Opcode Address

(a) Instruction format

Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Fetch Stage Execute Stage
Memory CPU Registers Memory CPU Registers
30011 9 4 0 3 0 0]PC 30011 9 4 0 30 1]PC
30159411 AC| 30115 9 4 1 000 3[AC
302(2 9 4 1 1 94 0[IR|302|2 9 4 1 1 9 40|IR
940[0 0 0 3 940[0 0 0 3
94110 0 0 2 94110 0 0 2
Step 1 Step 2
Memory CPU Registers Memory CPU Registers
30011 9 40 30 1|PC 30011 9 4 0 3 0 2|PC
301(5 9 4 1 000 3[AC|301{5 9 4 1 000 5[AC
3022941“59411}1 3022941<594IJR
940[0 0 0 3 940[0 0 0 3] *3+2=5
941[0 0 0 2 941[0 0 0 2——"
Step 3 Step 4
Memory CPU Registers Memory CPU Registers
300[1 9 4 0 30 2]PC |300[T 9 40 3 0 3]|PC
30115 9 4 1 000 5[AC]301|5 9 4 1 000 5[AC
302|12 9 4 1 »2 9 4 1|IR |302(2 9 4 1 294 1|IR
940[0 0 0 3 940[0 0 0 3
94110 0 0 2 94110 0 0 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Interrupts

m Mechanism by which other modules may
interrupt the normal sequencing of the
ProCessor

m Provided to improve processor utilization
m Most I/0 devices are slower than the processor
m Processor must pause to wait for device
m Wasteful use of the processor

Table 1.1 Classes of Interrupts

Program

Timer

I/0

Hardware
failure

Generated by some condition that occurs as a result of an
instruction execution, such as arithmetic overflow, division
by zero, attempt to execute an illegal machine instruction,
and reference outside a user's allowed memory space.

Generated by a timer within the processor. This allows the
operating system to perform certain functions on a regular
basis.

Generated by an I/0 controller, to signal normal
completion of an operation or to signal a variety of error
conditions.

Generated by a failure, such as power failure or memory
parity error.

Figure 1.5a

Flow of Control
Without

Interrupts

User

Program

@

WRITE

I/0
Program
£
A (O
....... 7O
‘ Command

v

(a) No interrupts

Interrupt
Handler

° ° (4 L] °
) ®ee oy [o L (Y
D) * ®e oo o o . S
D [} Ceq oq_ 0 o L3 .
(Y Y Ceq, "¢ 0 o ‘K
) . Ceel o0 e s
b [.l. '0 L) e
° L) (Y
[) LINC £ T90TS o,
" 4 o R R
o e
........... v" ll....l.llY eccccce o8 ll.ll.l.l.YO' ceccccccce

(b) Interrupts; short I/O wait

Figure 1.5b
Short I/0O Wait

interrupt occurs during course of execution of

=

user program

m.. —
2 | |2
S5l |E
T =
|
.1......... CARLN
[A S
-o. ‘- 000000“””””00
el N SR

Figure 1.5c¢

Long I/0 Wait

(c) Interrupts; long I/O wait

User Program Interrupt Handler

1
2
i
Interrupt —»
occurs here i+ 1 <
M

Figure 1.6 Transfer of Control via Interrupts

Fetch Stage Execute Stage Interrupt Stage
2 Interrupts
Disabled
Check for
Fetch next Execute interrupt;
instruction instruction Interrupts initiate interrupt
handler

Enabled

(HALT ’

Figure 1.7 Instruction Cycle with Interrupts

Time

HON

concurrent with

I I/O operation;
processor executing

I/O operation
processor waits

concurrent with

I I/O operation
processor executing

I/O operation;
processor waits

lejelolelelejelo

(b) With interrupts

(4)
_
HON

©
jol
_
NON

©,

(a) Without interrupts

Figure 1.8 Program Timing: Short I/O Wait

Time

I/O operation;

I/O operation
processor waits

concurrent with
processor executing;
then processor

waits

I/O operation
concurrent with
processor executing;
then processor

waits

I/O operation;
processor waits

Jol ol
(4) (4)
B C
o B
© RON
. (4)
ﬁ @
zou -
(3)

(b) With interrupts

(a) Without interrupts

Figure 1.9 Program Timing: Long I/O Wait

Hardware Software

—— A —A A

Device controller or
other system hardware
issues an interrupt

A4
Save remainder of
process state

y information
Processor finishes
execution of current
instruction

Process interrupt

\
Processor signals

acknowledgment
of interrupt A
Restore process state
information
Processor pushes PSW
and PC onto control
stack
Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 1.10 Simple Interrupt Processing

T-M
Control Y
Stack L |
:]
N+1
Program
Counter
Y [Start
Interrupt General
Service Registers
Y+ L [Return Routine
Stack
Pointer
Processor
T-M
N \
N+l User's
Program
Main
Memory

(a) Interrupt occurs after instruction

at location N

T-M
N+1
Control l
Stack
r —f
Y+L+1
Program
Counter
Y [Start
Interrupt General
Service Registers
Y + L [Return Routine T—M
Stack
Pointer
Processor
N +A; User's
Program
Main
Memory

(b) Return from interrupt

Figure 1.11 Changes in Memory and Registers for an Interrupt

™

-

&
A

~Multiple Interrupts

An interrupt occurs
while another interrupt Two approaches:
1s being processed

* e.g. receiving data from Disable interrupts
a communications line while an interrupt is
and printing results at being processed

the same time » Use a priority scheme

Interrupt
User Program Handler X

/

/

\

|

IIIIIIIIIIIIIIIIIIIIIIII/I/f\IIIIIIII

(a) Sequential interrupt processing

Interrupt
User Program Handler X

/

\

N

/IIIIIIIIIIIII\I

(b) Nested interrupt processing

Interrupt
Handler Y
—

/

Interrupt
andler Y

IIIIIIIIIIIIIII

Figure 1.12 Transfer of Control with Multiple Interrupts

Printer Communication

User Program : . : . z -
& Interrupt service routine interrupt service routine

—t=0 — —
— — I\ -
_ Q — z —
— ,‘/,\ —) —
- N e
\ _\)
S — Disk
K/ = interrupt service routine
\: ~—

{

Figure 1.13 Example Time Sequence of Multiple Interrupts

Memory Hierarchy

m Design constraints on a computer’s memory

® How much?
® How fast?
" How expensive?

m If the capacity 1s there, applications will likely be
developed to use 1t

B Memory must be able to keep up with the processor

m Cost of memory must be reasonable 1n relationship
to the other components

Memory Relationships

‘T
.
b 4

&

Faster
access time
= greater
cost per bit

Greater capacity

= smaller cost per
bit

Greater
capacity =
slower access
speed

The Memory Hierarchy

" Going down the
hierarchy:

> Decreasing cost per bit
» Increasing capacity
» Increasing access time

» Decreasing frequency of
access to the memory by
the processor

Figure 1.14 The Memory Hierarchy

Average access time

0 1
Fraction of accesses involving only Level 1 (Hit ratio)

Figure 1.15 Performance of a Simple Two-Level Memory

M Principle of Locality

m Memory references by the processor tend to
cluster

m Data 1s organized so that the percentage of
accesses to each successively lower level 1s
substantially less than that of the level above

m Can be applied across more than two levels of
memory

Secondary

Memory

Also
referred to
as auxiliary
memory

 External
 Nonvolatile

 Used to store
program and
data files

Cache Memory

m [nvisible to the OS
m Interacts with other memory management hardware

m Processor must access memory at least once per instruction
cycle

m Processor execution is limited by memory cycle time

m Exploit the principle of locality with a small, fast memory

'
Block Transfer

Word Transfer {-\L/—\
{\k/\

CPU Cache Main Memory

Fast Slow

(a) Single cache

Level 1 Level 2 Level 3
(L1) cache (L2) cache (L3) cache

Main

CPU Memory

il

Fastest Fast

Less Slow
fast

(b) Three-level cache organization

Figure 1.16 Cache and Main Memory

Line

Number Tag Block

0

1

2

Cc-1

Block Length

(K Words)
(a) Cache

Memory
address

0

1
2
3

2"-1

(b) Main memory

Word
Length

Figure 1.17 Cache/Main-Memory Structure

Block 0
(K words)

Block M — 1

(START ’

A 4

Receive address
RA from CPU

A4

Is block
containing RA
in cache?

RA - read address

\No

) ,

Yes

y

Access main
memory for block
containing RA

Fetch RA word
and deliver
to CPU

A4

Allocate cache
slot for main
memory block

Load main
memory block
into cache slot

Deliver RA word
to CPU

Figure 1.18 Cache Read Operation

Number
of cache
levels

Block size

Main
categories
are:

Write

Mapping
policy 1

function

Replacement

algorithm

Cache and

Cache Size

[

Block Size

-

b

Small caches have
significant impact
on performance

S

4

The unit of data
exchanged

between cache and

main memory
% 4

4 Mappmg Functlon s

® Determines which cache
location the block will occupy

When one block is read
in, another may have to be
replaced

Two constraints affect

design:

The more flexible the
mapping function, the
more complex 1s the
circuitry required to
search the cache

Replacement Algorithm

® T east Recently Used (LRU) Algorithm

m Effective strategy is to replace a block that
has been 1n the cache the longest with no
references to it

m Hardware mechanisms are needed to
1dentify the least recently used block

* Chooses which block to replace when a
new block 1s to be loaded into the cache

_ “fkg.:

e T ¥ R i > ~%

‘ £

o Y 2 A R

b o o :
9 | ’\‘ ! n 0 ‘?,‘ n“”"-;
\ ¢ " g

s B ¢
Tk B " ;
LB $ i Y %

e

4
ol
: P

3

Dictates when the memory write operation
takes place

e Can occur every time the block 1s updated

« Can occur when the block 1s replaced
* Minimizes write operations
» Leaves main memory in an obsolete state

 I/O Techniques

® When the processor encounters an instruction relating
to I/0, 1t executes that instruction by 1ssuing a command
to the appropriate I/O module

Three techniques are possible for I/O operations:

Programmed Interrupt- Direct Memory
I/0 Driven I/0 Access (DMA)

Programmed 1/0

m The I/0O module performs the requested action
then sets the appropriate bits 1in the 1/0 status
register

m The processor periodically checks the status of the
I/0 module until it determines the instruction 1s
complete

m With programmed I/0 the performance level of
the entire system 1s severely degraded

Processor

issues an 1/0 The processor
command to a executes the
module and data transfer
then goes on and then
to do some resumes its
other useful former
work processing

The I/0 module will More efficient than
then interrupt the Programmed 1/0 but
processor to request still requires active
service when it is intervention of the
ready to exchange processor to transfer
data with the data between memory

processor and an I/0 module

Interrupt-Driven I/ O
Drawbacks

m Transfer rate 1s limited by the speed with
which the processor can test and service a
device

m The processor 1s tied up 1n managing an 1/0
transfer

= A number of 1nstructions must be
executed for each 1/0 transfer

Dlrect Memory Access
- . (DMA)

® Performed by a separate module on the system bus or
incorporated 1into an I/0 module

When the processor wishes to read or write data it

1ssues a command to the DMA module containing:

 Whether a read or write 1s requested

* The address of the I/0 device involved

 The starting location in memory to read/write
* The number of words to be read/written

Direct Memory Access

m Transfers the entire block of data directly to
and from memory without going through the
Processor

m Processor is involved only at the beginning and end of the
transfer

m Processor executes more slowly during a transfer when
processor access to the bus is required

m More efficient than interrupt-driven or
programmed 1/0O

Symmetric Multiprocessors
. (SMP)

m A stand-alone computer system with the

following characteristics:

m Two or more similar processors of comparable capability

m Processors share the same main memory and are
interconnected by a bus or other internal connection scheme

m Processors share access to I/O devices
m All processors can perform the same functions

m The system 1s controlled by an integrated operating system
that provides interaction between processors and their
programs at the job, task, file, and data element levels

e : -
. b 3
S T
g 2
; - 2 ‘ 3
e Yo . : :;: "2
f ':‘ ‘&'.‘.‘: 4 ;1 o 7)

Performance

» A system with multiple
processors will yield greater
performance if work can be
done in parallel

Availability

» The failure of a single
processor does not halt the
machine

Scaling

» Vendors can offer a range of
products with different price
and performance
characteristics

Incremental Growth

» An additional processor can
be added to enhance
performance

Processor

L1 Cache

L2 Cache

Processor

L1 Cache

Main
Memory

L2 Cache

System Bus

Processor

L1 Cache

L2 Cache

/0
Subsystem

I/0
Adapter

I/0
Adapter

I/0
Adapter

Figure 1.19 Symmetric Multiprocessor Organization

‘Multicore Computer

m Also known as a chip multiprocessor

m Combines two or more processors (cores) on a
single piece of silicon (die)
m Each core consists of all of the components of an
independent processor

m In addition, multicore chips also include L2
cache and in some cases .3 cache

Core 0 Core 1 Core 6 Core 7
32 kB(32 kB| (32 kB[32 kB * B0 32KkB(32kB| (32 kB|32 kB
L1-I|L1-D| | L1-I|L1-D L1-I|L1-D| |L1-I|L1-D
256 kB 256 kB 256 kB 256 kB
L2 Cache L2 Cache L2 Cache L2 Cache
20 MB
L3 Cache
DDR4 Memory PCI Express
Controllers
4X8B @ 2.133 GT/s 40 lanes @ 8 GT/s

(a) Block diagram

(b) Physical layout on chip
Figure 1.20 Intel Core i7-5960X Block Diagram

Summary

m Basic Elements

m Evolution of the
MiCroprocessor

m Instruction execution

m Interrupts

m Interrupts and the
instruction cycle

m Interrupt processing
m Multiple interrupts

m The memory hierarchy

m Cache memory
m Motivation
m Cache principles
m Cache design

m Direct memory access

m Multiprocessor and
multicore organization

® Symmetric
multiprocessors

m Multicore computers

