
Compiling Code Bases

Generating an Executable File

C File (.c)

Object File (.o)

• Intermediate machine-
specific representation of
just what is in a C file

Executable (no extension)

CG and AHF: Introduction to Operating Systems: Make Files

Compiler: translate from
human readable to
machine-specific code

Linker: bring together
multiple object files so that
all functions are known

Gnu C Compiler (gcc)

• Performs the compiling and linking phases for us

• Also invokes the assembler as part of the compiling
process

CG and AHF: Introduction to Operating Systems: Make Files

Compiling Code Bases

As the set of files in a program gets large, we want to:

• Have a way to invoke the compiler easily

• Only compile the code that needs to be compiled

• Have a way to track which files depend on which other
files

Invoking gcc at the compiler gets tiring and error prone…

CG and AHF: Introduction to Operating Systems: Make Files

Make Files

One of several ways to manage the compiling/project
management process

• Define dependencies: what files depend on other files?

• Define rules for how to create derived files
• Including the invocation of the compiler

• Uses file time stamps to know what work actually needs
to be done

CG and AHF: Introduction to Operating Systems: Make Files

Our First Program

#include <stdio.h>

int main(int argc, char** argv)

{

printf("Hello, World\n");

}

gcc hello.c –o hello

CG and AHF: Introduction to Operating Systems: Make Files

Our First Makefile

The top rule is executed by default

all: hello

Other rules are invoked as necessary

Rule for creating the hello executable

hello: hello.c

gcc hello.c -o hello

CG and AHF: Introduction to Operating Systems: Make Files

CG and AHF: Introduction to Operating Systems: Make Files

