
Exam Technical Details

• When: Thursday, October 11th, in class.
• Seats will be assigned
• One page of notes are allowed.

• 8.5x11 paper (double-sided is fine). Typed or handwritten. No Magnification
instruments.

• No electronic devices.
• Including calculators, watches, iwatches, phones, laptops, Tamagotchis, tablets, ...

• Multiple Choice
• Can grade as you exit the exam.
• Contact drc.ou.edu for appropriate accommodations (drc@ou.edu).

Operating System

n A program that controls the execution of
application programs

n An interface between applications and hardware

Main objectives of an OS:

• Convenience
• Efficiency
• Ability to evolve

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The Operating System as
Resource Manager

nThe OS is responsible for controlling
the use of a computer’s resources,
such as I/O, main and secondary
memory, and processor execution
time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Modes of Operation

User Mode
• User program executes in

user mode
• Certain areas of memory are

protected from user access
• Certain instructions may not

be executed

Kernel Mode
• Monitor executes in kernel

mode
• Privileged instructions may

be executed
• Protected areas of memory

may be accessed

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Read one record from file 15 µs
Execute 100 instructions 1 µs
Write one record to file 15 µs
TOTAL 31 µs

Percent CPU Utilization

�

= 1
31

= 0.032 = 3.2%

Figure 2.4 System Utilization Example

Process

n Fundamental to the structure of operating systems

A process can be defined as:

A program in execution

An instance of a running program

The entity that can be assigned to, and executed on, a processor

A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process

Management

§ The entire state of the
process at any instant is
contained in its context

§ New features can be
designed and incorporated
into the OS by expanding
the context to include any
new information needed to
support the feature

Figure 2.8 Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
Limit

Other
registers

i

b
h

j

b

h
Process

B

Process
A

Main
Memory

Processor
Registers

Process
list

Program
(code)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Management

n The OS has five principal storage
management responsibilities:

Process
isolation

Automatic
allocation

and
management

Support of
modular

programming

Protection
and access

control

Long-term
storage

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

SIGHUP
SIGQUIT
SIGTRAP
SIGBUS
SIGKILL
SIGSEGV
SIGPIPT
SIGTERM
SIGCHLD

Terminal hangup
Keyboard quit
Trace trap
Bus error
Kill signal
Segmentation violation
Broken pipe
Termination
Child status unchanged

SIGCONT
SIGTSTP
SIGTTOU
SIGXCPU
SIGVTALRM
SIGWINCH
SIGPWR
SIGRTMIN
SIGRTMAX

Continue
Keyboard stop
Terminal write
CPU limit exceeded
Virtual alarm clock
Window size unchanged
Power failure
First real-time signal
Last real-time signal

Table 2.6 Some Linux Signals

Linux Signals

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Filesystem related
close Close a file descriptor.
link Make a new name for a file.
open Open and possibly create a file or device.
read Read from file descriptor.
write Write to file descriptor

Process related

execve Execute program.
exit Terminate the calling process.
getpid Get process identification.
setuid Set user identity of the current process.
ptrace Provides a means by which a parent process my observe and control

the execution of another process, and examine and change its core
image and registers.

Scheduling related
sched_getparam Sets the scheduling parameters associated with the scheduling policy

for the process identified by pid.
sched_get_priority_max Returns the maximum priority value that can be used with the

scheduling algorithm identified by policy.
sched_setscheduler Sets both the scheduling policy (e.g., FIFO) and the associated

parameters for the process pid.
sched_rr_get_interval Writes into the timespec structure pointed to by the parameter tp the

round robin time quantum for the process pid.
sched_yield A process can relinquish the processor voluntarily without blocking

via this system call. The process will then be moved to the end of the
queue for its static priority and a new process gets to run.

 Table 2.7 Some Linux System Calls (page 1 of 2)
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 2.7 Some Linux System Calls (page 2 of 2)

Interprocess Communication (IPC) related

msgrcv A message buffer structure is allocated to receive a
message. The system call then reads a message from the
message queue specified by msqid into the newly created
message buffer.

semctl Performs the control operation specified by cmd on the
semaphore set semid.

semop Performs operations on selected members of the semaphore
set semid.

shmat Attaches the shared memory segment identified by shmid
to the data segment of the calling process.

shmctl Allows the user to receive information on a shared
memory segment, set the owner, group, and permissions of
a shared memory segment, or destroy a segment.

Socket (networking) related
bind Assigns the local IP address and port for a socket.

Returns 0 for success and –1 for error.
connect Establishes a connection between the given socket and

the remote socket associated with sockaddr.
gethostname Returns local host name.
send Send the bytes contained in buffer pointed to by *msg

over the given socket.
setsockopt Sets the options on a socket

Miscellaneous
fsync Copies all in-core parts of a file to disk, and waits

until the device reports that all parts are on stable
storage.

time Returns the time in seconds since January 1, 1970.
vhangup Simulates a hangup on the current terminal. This call

arranges for other users to have a "clean" tty at login
time.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Atomicity

• There are many situations where access to a common resource

involves a sequence of operations that cannot be interrupted.

• We want to treat these operations atomically (i.e., that they cannot be

broken apart)

• These are called critical sections

• Because this issue comes up in many different ways in an OS, we will

find a range of context-specific solutions to this problem

CG and AHF: Introduction to Operating Systems

File Descriptors vs File Pointers

• File descriptor:

• int type that references a table of open streams

• Can reference files, pipes or sockets (more on the middle soon; latter is for

inter-process communication)

• Access through system calls: open(), read(), write(), close() …

• File pointer

• FILE type defined in stdio.h (it is a struct)

• Includes the file descriptor, but adds buffering and other features

• Access through the stdio library: fopen(), fread(), fwrite(), fclose(), fprintf(),

fscanf()

• When working with files, this is the preferred interface

CG and AHF: Introduction to Operating Systems

Flushing Streams

• Because FILE streams are buffered, a fprintf() does not

necessarily affect the file immediately

• Instead, the bytes are dropped into a buffer; at some point the library

will decide to move the bytes from the buffer to the file

• fflush(fp) will immediately force all bytes in the buffer to the

file

CG and AHF: Introduction to Operating Systems

File Descriptors to Files (or Streams):
Three Levels of Representation

CG and AHF: Introduction to Operating Systems

Copying a File Descriptor

• In some cases, it is useful for a process to be able to refer to the same

file/stream using two different file descriptors

• For example, if we want output written to both stdout and stderr to appear

on stderr

• Allocate the first available fd & configure it to point to the same

resource as oldfd:

newfd = dup(oldfd)

• Close newfd (if it is open) and allocate it to point to oldfd:

newfd = dup2(oldfd, newfd)

CG and AHF: Introduction to Operating Systems

Key I/O System Calls

| opens the file identified by pathname,
returning a file descriptor.

| reads at most count bytes from the open
file referred to by fd and stores them in
buffer.

| writes up to count bytes from buffer to the
open file referred to by fd.

| is called after all I/O has been completed,
in order to release the file descriptor fd
and its associated kernel resources.

CG and AHF: Introduction to Operating Systems 6

Standard File Descriptors

| When a shell program is run, these
descriptors are copied from the
terminal to the running program.

| I/O redirection may modify this
assignment.

| IDEs may map output to stderr to a
red color

| POSIX names are available in
<unistd.h>

CG and AHF: Introduction to Operating Systems 5

./myprog <input.txt >output.txt 2>error.txt

New process/program
to be run

stdin is mapped to
input.txt

stdout is mapped to
output.txt

stderr is mapped to
error.txt

Universality of
I/O

same four system calls—open(), read(),
write(), and close()—are used to perform
I/O on all types of files.

CG and AHF: Introduction to Operating Systems 8

File offset

| Also called read- write offset or pointer

| the kernel records a file offset for each open file.

| The first byte of the file is at offset 0.

| The file offset is set to point to the start of the file when the file is
opened and is automatically adjusted by each subsequent call to
read() or write()

CG and AHF: Introduction to Operating Systems 18

CG and AHF: Introduction to Operating Systems 19

Generating an Executable File

C File (.c)

Object File (.o)
• Intermediate machine-

specific representation of
just what is in a C file

Executable (no extension)
CG and AHF: Introduction to Operating Systems: Make Files

Compiler: translate from
human readable to
machine-specific code

Linker: bring together
multiple object files so that
all functions are known

Our First Makefile

The top rule is executed by default
all: hello

Other rules are invoked as necessary

Rule for creating the hello executable
hello: hello.c

gcc hello.c -o hello
CG and AHF: Introduction to Operating Systems: Make Files

CG and AHF: Introduction to Operating Systems

Man syscalls

Mount Points

• We would like to provide a file system abstraction that makes it
appear as though all of the storage resources live within one common
directory tree (starting from /)
• Linux solution: provide a way to virtually make a file system appear as

though it is a directory with the root directory

CG and AHF: Introduction to Operating Systems

To the instance…

Create a new file system in a file:
dd if=/dev/zero of=~/myfile bs=512 count=4096
mkfs.ext3 ~/myfile
sudo mkdir /myfs
sudo mount ~fagg/myfile /myfs

Unmount the new file system:
sudo umount /myfs
• Note: not allowed if the fs is being accessed at that instant

CG and AHF: Introduction to Operating Systems

Process Elements

n Two essential elements of a process are:

n when the processor begins to execute the program code, we refer to
this executing entity as a process

Program code
n which may be shared with other processes that are executing

the same program

A set of data associated with that code

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n While the program is executing, this process can be uniquely
characterized by a number of elements, including:

Identifier

State Priority Program
counter

Memory
pointers

Context
data

I/O status
information

Accounting
information

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Control

Block

§Contains the process elements

§It is possible to interrupt a running
process and later resume execution as
if the interruption had not occurred

§Created and managed by the
operating system

§Key tool that allows support for
multiple processes

Identifier

Figure 3.1 Simplified Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.1 Reasons for Process

Creation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process Termination

n There must be a means for a process to indicate its
completion

n A batch job should include a HALT instruction or an
explicit OS service call for termination

n For an interactive application, the action of the user will
indicate when the process is completed (e.g. log off,
quitting an application)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.2

Reasons for
Process

Termination

Normal completion The process executes an OS service call to indicate that it has completed

running.

Time limit exceeded The process has run longer than the specified total time limit. There are a

number of possibilities for the type of time that is measured. These include total
elapsed time ("wall clock time"), amount of time spent executing, and, in the
case of an interactive process, the amount of time since the user last provided
any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to use,

or it tries to use it in an improper fashion, such as writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries to

store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event to

occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure to

read or write after a specified maximum number of tries (when, for example, a
defective area is encountered on a tape), or invalid operation (such as reading
from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of

branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the process

(e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate all

of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

(Table is located on page 111
in the textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Five-State Process Model

New Ready

Blocked

Running Exit

Figure 3.6 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event
Wait

Event
Occurs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Swapping
n Involves moving part of all of a process from main memory to disk

n When none of the processes in main memory is in the Ready state, the
OS swaps one of the blocked processes out on to disk into a suspend
queue

n This is a queue of existing processes that have been temporarily
kicked out of main memory, or suspended

n The OS then brings in another process from the suspend queue or it
honors a new-process request

n Execution then continues with the newly arrived process

n Swapping, however, is an I/O operation and therefore there is the
potential for making the problem worse, not better. Because disk I/O is
generally the fastest I/O on a system, swapping will usually enhance
performance

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ev
en

t
O

cc
ur

s

New

Suspend

Ready

Blocked

Running Exit

Figure 3.9 Process State Transition Diagram with Suspend States

Admit

(a) With One Suspend State

Suspend

Even
t W

ait

Ev
en

t
O

cc
ur

s

Acti
va

te

Dispatch

Timeout

Release

Ready/
Suspend

New

Ready

Blocked

Running Exit

Adm
itAdm

it

(b) With Two Suspend States

Even
t W

ait
Ev

en
t

O
cc

ur
s

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/
Suspend

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.4
Typical Elements of a Process Image

User Data
 The modifiable part of the user space. May include program data, a user stack area, and

programs that may be modified.

User Program
 The program to be executed.

Stack
 Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is

used to store parameters and calling addresses for procedure and system calls.

Process Control Block
 Data needed by the OS to control the process (see Table 3.5).

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.5

Typical

Elements

of a

Process

Control

Block
(page 1 of 2)

Process Identification

Identifiers
 Numeric identifiers that may be stored with the process control block include
 •Identifier of this process
 •Identifier of the process that created this process (parent process)
 •User identifier

Processor State Information

User-Visible Registers
 A user-visible register is one that may be referenced by means of the machine language that the

processor executes while in user mode. Typically, there are from 8 to 32 of these registers, although
some RISC implementations have over 100.

Control and Status Registers
 These are a variety of processor registers that are employed to control the operation of the processor.

These include
 •Program counter: Contains the address of the next instruction to be fetched
 •Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,

equal, overflow)
 •Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
 Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used

to store parameters and calling addresses for procedure and system calls. The stack pointer points to
the top of the stack.

(Table is located
on page 125 in the
textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 3.5

Typical

Elements of a

Process

Control Block
(page 2 of 2)

Process Control Information

Scheduling and State Information
 This is information that is needed by the operating system to perform its scheduling function. Typical

items of information:
 •Process state: Defines the readiness of the process to be scheduled for execution (e.g., running,

ready, waiting, halted).
 •Priority: One or more fields may be used to describe the scheduling priority of the process. In

some systems, several values are required (e.g., default, current, highest-allowable)
 •Scheduling-related information: This will depend on the scheduling algorithm used. Examples

are the amount of time that the process has been waiting and the amount of time that the process
executed the last time it was running.

 •Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring
 A process may be linked to other process in a queue, ring, or some other structure. For example, all

processes in a waiting state for a particular priority level may be linked in a queue. A process may
exhibit a parent-child (creator-created) relationship with another process. The process control block
may contain pointers to other processes to support these structures.

Interprocess Communication
 Various flags, signals, and messages may be associated with communication between two

independent processes. Some or all of this information may be maintained in the process control
block.

Process Privileges
 Processes are granted privileges in terms of the memory that may be accessed and the types of

instructions that may be executed. In addition, privileges may apply to the use of system utilities and
services.

Memory Management
 This section may include pointers to segment and/or page tables that describe the virtual memory

assigned to this process.

Resource Ownership and Utilization
 Resources controlled by the process may be indicated, such as opened files. A history of utilization of

the processor or other resources may also be included; this information may be needed by the
scheduler.

(Table is located
on page 125 in the textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n The most important data structure in an OS

n Contains all of the information about a process that is needed by the OS

n Blocks are read and/or modified by virtually every module in the OS

n Defines the state of the OS

n Difficulty is not access, but protection

n A bug in a single routine could damage process control blocks, which
could destroy the system’s ability to manage the affected processes

n A design change in the structure or semantics of the process control block
could affect a number of modules in the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Virtual Memory

fork

Copy on write memory

