
CS 3113

Processes

Get pid

Virtual Memory

fork

Kerrisk Chapter 24

fork

fork

Copy on write memory

wait()

Wait status

• While the program is executing, this process can be
uniquely characterized by a number of elements,
including:

identifier

state priority program
counter

memory
pointers

context
data

I/O status
information

accounting
information

Unix SVR4

• Uses the model where most of the OS executes within
the environment of a user process
• System processes run in kernel mode

• executes operating system code to perform administrative and
housekeeping functions

• User Processes
• operate in user mode to execute user programs and utilities
• operate in kernel mode to execute instructions that belong to

the kernel
• enter kernel mode by issuing a system call, when an exception

is generated, or when an interrupt occurs

Table 3.9 UNIX Process States

Created

Sleep,
Swapped

Ready to Run
In Memory

Ready to Run
Swapped

Asleep in
MemoryZombie

Kernel
Running

User
Running

Preempted

fork

not enough memory
(swapping system only)

enough
memory

swap in

swap out

swap out

wakeupwakeupsleep

return

preempt

return
to user

system call,
interrupt

exit

reschedule
process

interrupt,
interrupt return

Figure 3.17 UNIX Process State Transition Diagram

Table
3.10
UNIX

Process
Image

User-Level Context

Process text Executable machine instructions of the program
Process data Data accessible by the program of this process
User stack Contains the arguments, local variables, and pointers for functions

executing in user mode
Shared memory Memory shared with other processes, used for interprocess

communication
Register Context

Program counter Address of next instruction to be executed; may be in kernel or

user memory space of this process
Processor status register Contains the hardware status at the time of preemption; contents

and format are hardware dependent
Stack pointer Points to the top of the kernel or user stack, depending on the mode

of operation at the time or preemption
General-purpose registers Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to

the operating system
U (user) area Process control information that needs to be accessed only in the

context of the process
Per process region table Defines the mapping from virtual to physical addresses; also

contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute

Kernel stack Contains the stack frame of kernel procedures as the process
executes in kernel mode

(Table is located on
page 144 in the

textbook)

Table 3.11
UNIX Process
Table Entry

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate

the process.

User identifiers The real user ID identifies the user who is responsible for the

running process. The effective user ID may be used by a process
to gain temporary privileges associated with a particular program;
while that program is being executed as part of the process, the
process operates with the effective user ID.

Process identifiers ID of this process; ID of parent process. These are set up when the

process enters the Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs,

the process is transferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and

user-set timer used to send alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready

to execute).

Memory status Indicates whether process image is in main memory or swapped

out. If it is in memory, this field also indicates whether it may be
swapped out or is temporarily locked into main memory.

(Table is located on page 145 in the

textbook)

Table 3.12
UNIX U Area

(Table is located on page 146 in the
textbook)

• Process
creation is
by means
of the
kernel
system call,
fork()
• This causes

the OS, in
Kernel
Mode, to:

1
•Allocate a slot in the process table for the new process

2
•Assign a unique process ID to the child process

3
•Make a copy of the process image of the parent, with the exception

of any shared memory

4
•Increments counters for any files owned by the parent, to reflect

that an additional process now also owns those files

5
•Assigns the child process to the Ready to Run state

6
•Returns the ID number of the child to the parent process, and a 0

value to the child process

• After creating the process the Kernel can do one of the
following, as part of the dispatcher routine:
• stay in the parent process
• transfer control to the child process
• transfer control to another process

Exec()

Examples…

Linux find
Man find

system

