CS 3113

Processes

Get pid

#include <unistd.h>

pid t getpid(void);

Always successfully returns process ID of caller

#include <unistd.h>

pid t getppid(void);

Always successfully returns process ID of parent of caller

Virtual Memory

Virtual memory address

(hexadecimal)

0xC0000000

Top of
stack

Program
break

Kernel
(mapped into process
virtual memory, but not
accessible to program)

/proc/kallsyms
provides addresses of
<¢— kernel symbols in this
region (/proc/ksyms in
kernel 2.4 and earlier)

argv, environ

Stack
(grows downwards)

_______ =

Text (program code)

increasing virtual addesses

0x08048000

0x00000000

(unallocated memory)
Heap
(grows upwards)
<+ Tend
Uninitialized data (bss)
<+— edata
Initialized data
— Telext

Figure 6-1: Typical memory layout of a process on Linux/x86-32

fork

finclude <unistd.h>

pid t fork(void);

In parent: returns process ID of child on success, or -1 on error;
in successfully created child: always returns 0

Kerrisk Chapter 24

fork

finclude <unistd.h>

pid t fork(void);

In parent: returns process ID of child on success, or -1 on error;
in successfully created child: always returns 0

pid_t childPid; /* Used in parent after successful fork()
to record PID of child */
switch (childPid = fork()) {
case -1: /* fork() failed */
/* Handle error */

case 0: /* Child of successful fork() comes here */
/* Perform actions specific to child */

default: /* Parent comes here after successful fork() */
/* Perform actions specific to parent */
}

fork

finclude <unistd.h>

pid t fork(void);

In parent: returns process ID of child on su
in successfully created

Listing 24-1: Using fork()

procexec/t_fork.c
ffinclude "tlpi_hdr.h"

static int idata = 111; /* Allocated in data segment */

int
main(int arge, char *argv[])

int istack = 222; /* Allocated in stack segment */
pid t childPid;

switch (childPid = fork()) {
case -1:
errExit("fork");

case 0:
idata *= 3;
istack *= 3;
break;

default:
sleep(3); /* Give child a chance to execute */
break;

}

/* Both parent and child come here */

printf("PID=X1ld %s idata=%d istack=%d\n", (long) getpid(),
(childPid == 0) ? "(child) " : “(parent)", idata, istack);

exit(EXIT_SUCCESS);

procexec/t_fork.c

Parent process
running program A

¥ Child process
Jork() running program “A

B Yemory of
areng Copied ¢, chilg

Parent may perform
other actions here

Child may perform
further actions here

! '

wait(&status)
(optional) w, execve(B, ...)

; S~ (optional)
I ~ |
: = .
1 S L. 54

g 1 = "’_“‘.{?—\ ':/a’.

& : - ,-’o\ S?Q,

21¢ 2

§_ : - L AN Execution of
,-§ " program “B”
12 e ‘
1 ~
i Kernel restarts parent and =

- - - — - — = = - — T — —— = = exil(stat
l optionally delivers SIGCHLD R

Figure 24-1: Overview of the use of fork(), exit(), wait(), and execve()

a) Descriptors and open Parent file descriptors Open file table

file table entries (close-on-exec flag) (file offset, status flags)
before fork()
descriptor x
descriptor y s OFT entry m
OFT entryn
b) Descriptors after Parent file descriptors Open file table
rk
Jork() .--1 descriptor x
',,’ .--1 descriptory \ OFT entry m
Descriptors |/~
duplicated . Child file descriptors
in child \‘\
\, ™| descriptorx OFT entryn
"= descriptor y /
c) After closing unused Parent file descriptors Open file table
descriptors in parent Jescri
(y) and Child (x) escrlptorx \
descriptor y OFT entry m
Child file descriptors
descriptor x OFT entryn
descriptor y /

Figure 24-2: Duplication of file descriptors during fork(), and closing of unused descriptors

Copy on write memory

Before modification After modification
Parent Physical page Parent Physical page
page table frames page table frames
PT entry 211 PT entry 211
Unused
Child Frame page Child Frame
Jrames
page table 1998 page table 1998
Frame
2038
PT entry 211 PT entry 211 g

Figure 24-3: Page tables before and after modification of a shared copy-on-write page

Listing 24-2: Sharing of file offset and open file status flogs between parent and child

#include <sys/stat.h>
#include <fentl.h>

#include <sys/wait.h>
#include "tlpi hdr.h"

int

main(int argc, char *argv[])

{

int fd, flags;
char template[] = "/tmp/testXOOXX";
setbuf(stdout, NULL); /* Disable buffering of stdout */
fd = mkstemp(template);
if (fd == -1)

errExit("mkstemp");

printf("File offset before fork(): ¥lld\n",
(leng long) lseek(fd, 0, SEEX CUR));

flags = fentl(fd, F_GETFL);
if (flags == -1)
errExit("fcntl - F_GETFL");
printf("0_APPEND flag before fork() is: #s\n",
(flags & O _APPEND) ? "on" : "off");

procexec/fork_file_ shar

switch (fork()) {
case -1:
errExit("fork");

case 0: /* Child: change file offset and status flags */
if (lseek(fd, 1000, SEEK SET) == -1)
errExit("lseek”);

flags = fcntl(fd, F_CETFL);
if (flags == -1)
errExit("fentl - F_GETFL");
flags |= O _APPEND;
if (fcntl(fd, F_SETFL, flags) == -1)
errExit("fentl - F_SETFL");
_exit(EXIT SUCCESS);

/* Fetch current flags */

/® Turn O_APPEND on */

default: /* Parent: can see file changes made by child */
if (wait(NULL) == -1)
errExit("wait");
printf(“Child has exited\n");

/* Wait for child exit */

printf("File offset in parent: ¥lld\n",
(long long) lseek(fd, o0, SEEK_CUR));

flags = fcntl(fd, F_GETFL);
if (flags == -1)
errExit("fentl - F_GETFL");
printf(“0_APPEND flag in parent is: ¥s\n",
(flags & O_APPEND) ? “"on" : "off");
exit{EXIT SUCCESS);

procexec/fork_file_sharing.c

wait()

#include <sys/wait.h>

pid t wait(int *status);

Returns process ID of terminated child, or -1 on error

#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Returns 0 on success or if WNOHANG was specified and
there were no children to wait for, or -1 on error

#define _BSD SOURCE /* Or #define _XOPEN_SOURCE 500 for wait3() */
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3(int *status, int options, struct rusage *rusage);
pid_t wait4(pid_t pid, int *status, int options, struct rusage *rusage);

Both return process ID of child, or -1 on error waitpid(pid, &status, options);

waitpid(-1, &status, options);

Walit status

Figure 26-1 shows the layout of the wait status value for Linux/x86-32. The
details vary across implementations. SUSv3 doesn’t specify any particular layout
for this information, or even require that it is contained in the bottom 2 bytes
of the value pointed to by status. Portable applications should always use the
macros described in this section to inspect this value, rather than directly
inspecting its bit-mask components.

15 < bits -8 7 0
Normal termination | exit status (0-255) | 0 |
Killed by signal | unused (0) | | termination signal (1= 0) |

t core dumped flag

Stopped by signal | stop signal | Ox7F |

Continued by signal I OXFFFF |

Listing 26-1: Creating and waiting for multiple children

procexec/multi_wait.c

#include <sys/wait.h>

#include <time.h>

#include "curr_time.h" /* Declaration of currTime() */
#include "tlpi_hdr.h"

int

main(int argc, char *argv[])

{
int numDead; /* Number of children so far waited for */
pid_t childPid; /* PID of waited for child */
int j;

if (argc < 2 || stremp(argv[1], "--help") == 0)
usageErr("%s sleep-time...\n", argv[0]);

setbuf(stdout, NULL); /* Disable buffering of stdout */

for (j = 1; j < argc; j++) { /* Create one child for each argument */
switch (fork()) {
case -1:
errExit("fork");

case 0: /* Child sleeps for a while then exits */
printf("[%s] child %d started with PID %1d, sleeping %s "
"seconds\n", currTime("%T"), j, (long) getpid(), argv[jl);
sleep(getInt(argv[j], GN_NONNEG, "sleep-time"));
_exit(EXIT_SUCCESS);

default: /* Parent just continues around loop */
break;
}
}
numDead = 0;
for (5;) { /* Parent waits for each child to exit */
childPid = wait(NULL);
if (childpPid == -1) {
if (errno == ECHILD) {
printf("No more children - bye!\n");
exit(EXIT_SUCCESS);
} else { /* Some other (unexpected) error */
errExit("wait");
}
}
numDead++;
printf("[%s] wait() returned child PID %1d (numDead=%d)\n",
currTime("%T"), (long) childPid, numDead);
}

procexec/multi wait.c

Listing 26-3: Using waitpid|() to refrieve the status of a child process if (argc > 1 88 strcmp(argv[1], "--help") == 0)

procexec/child_status.c usageErr("%s [exit-status]\n", argv[0]);

#include <sys/wait.h>)
#include "print_wait_status.h" /* Declares printWaitStatus() */ switch (fork()? {
#include "tlpi_hdr.h" case -1: errkxit("fork");

int case 0: /* Child: either exits immediately with given
main(int argc, char *argv[]) status or loops waiting for signals */
{ printf("Child started with PID = %1d\n", (long) getpid());
int status; if (argc » 1) /* Status supplied on command line? */
pid_t childPid; exit(getInt(argv[1], 0, "exit-status"));
else /* Otherwise, wait for signals */
for (5;)
pause();
exit(EXIT_FAILURE); /* Not reached, but good practice */

default: /* Parent: repeatedly wait on child until it
either exits or is terminated by a signal */
for (55) {

childPid = waitpid(-1, &status, WUNTRACED
#ifdef WCONTINUED /* Not present on older versions of Linux */
| WCONTINUED
#endif
);
if (childPid == -1)
errExit("waitpid");

/* Print status in hex, and as separate decimal bytes */

printf("waitpid() returned: PID=%1d; status=0x%04x (%d,%d)\n",
(long) childpPid,
(unsigned int) status, status >> 8, status & oxff);
printWaitStatus(NULL, status);

if (WIFEXITED(status) || WIFSIGNALED(status))
exit(EXIT_SUCCESS);

procexec/child_status.c

Process Elements

* While the program is executing, this process can be
uniquely characterized by a number of elements,
including:

identifier

program

state priority counter

memory context |/O status | accounting
pointers data information | information

=

Unix SVR4 *

e Uses the model where most of the OS executes within
the environment of a user process

e System processes run in kernel mode

e executes operating system code to perform administrative and
housekeeping functions

 User Processes

e operate in user mode to execute user programs and utilities

e operate in kernel mode to execute instructions that belong to
the kernel

* enter kernel mode by issuing a system call, when an exception
is generated, or when an interrupt occurs

Table 3.9 UNIX Process States

User Running

Kernel Running
Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Zombie

Executing in user mode.
Executing in kernel mode.
Ready to run as soon as the kernel schedules it.

Unable to execute until an event occurs; process is in main memory
(a blocked state).

Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process is newly created and not yet ready to run.

Process no longer exists, but it leaves a record for its parent process
to collect.

fork

Created
Preempted
return ~ . enough not enough memory
to user A So memory, (swapping system only)
M Y
~
s ~
User N
Running preempt So
swap out
return Ready to Run »Ready to Run
reschedule
In Memory < : Swapped
process swap in
system call, /
interrupt Kernel A A
Running
wakeu wakeu
interrupt, sleep p p
interrupt return exit
. Asleep in swap out Sleep,
Zombie Biemory D> B apped

Figure 3.17 UNIX Process State Transition Diagram

Table
3.10
UNIX
Process
Image

(Table is located on
page 144 in the
textbook)

Process text
Process data
User stack

Shared memory

User-Level Context

Executable machine instructions of the program

Data accessible by the program of this process

Contains the arguments, local variables, and pointers for functions
executing in user mode

Memory shared with other processes, used for interprocess
communication

Program counter
Processor status register
Stack pointer

General-purpose registers

Register Context

Address of next instruction to be executed; may be in kernel or
user memory space of this process

Contains the hardware status at the time of preemption; contents
and format are hardware dependent

Points to the top of the kernel or user stack, depending on the mode
of operation at the time or preemption

Hardware dependent

Process table entry
U (user) area

Per process region table

Kernel stack

System-Level Context

Defines state of a process; this information is always accessible to
the operating system

Process control information that needs to be accessed only in the
context of the process

Defines the mapping from virtual to physical addresses; also
contains a permission field that indicates the type of access
allowed the process: read-only, read-write, or read-execute
Contains the stack frame of kernel procedures as the process
executes in kernel mode

Table 3.11
UNIX Process
Table Entry

(Table is located on page 145 in the
textbook)

Process status
Pointers

Process size

User identifiers

Process identifiers

[Event descriptor

Priority
Signal

Timers

P link

Memory status

Current state of process.
To U area and process memory area (text, data, stack).

Enables the operating system to know how much space to allocate
the process.

The real user ID identifies the user who is responsible for the
running process. The effective user ID may be used by a process
to gain temporary privileges associated with a particular program;
while that program is being executed as part of the process, the
process operates with the effective user ID.

ID of this process; ID of parent process. These are set up when the
process enters the Created state during the fork system call.

Valid when a process is in a sleeping state; when the event occurs,
the process is transferred to a ready-to-run state.

Used for process scheduling.
Enumerates signals sent to a process but not yet handled.

Include process execution time, kernel resource utilization, and
user-set timer used to send alarm signal to a process.

Pointer to the next link in the ready queue (valid if process is ready
to execute).

Indicates whether process image is in main memory or swapped
out. If it is in memory, this field also indicates whether it may be
swapped out or is temporarily locked into main memory.

Table 3.12
UNIX U Area

(Table is located on page 146 in the
textbook)

Process table pointer

User identifiers

Timers

Signal-handler array

Control terminal

Error field

Return value

I/O parameters

File parameters

User file descriptor table

Limit fields

Permission modes fields

Indicates entry that corresponds to the U area.

Real and effective user IDs. Used to determine user
privileges.

Record time that the process (and its descendants) spent
executing in user mode and in kernel mode.

For each type of signal defined in the system, indicates how
the process will react to receipt of that signal (exit, ignore,
execute specified user function).

Indicates login terminal for this process, if one exists.
Records errors encountered during a system call.

Contains the result of system calls.

Describe the amount of data to transfer, the address of the
source (or target) data array in user space, and file offsets
for I/O.

Current directory and current root describe the file system
environment of the process.

Records the files the process has opened.

Restrict the size of the process and the size of a file it can
write.

Mask mode settings on files the process creates.

Process Creation

¢ P Focess e Allocate a slot in the process table for the new process
creation iIs .
N
by Mmeans e Assign a unique process ID to the child process
of the ’
ke rne| * Make a copy of the process image of the parent, with the exception |
of any shared memory)
system call,

fork()

* This causes
the OS, in
Kernel
Mode, to:

* Increments counters for any files owned by the parent, to reflect
that an additional process now also owns those files

* Assigns the child process to the Ready to Run state

e Returns the ID number of the child to the parent process, anda 0
value to the child process

After Creation

» After creating the process the Kernel can do one of the
following, as part of the dispatcher routine:

e stay in the parent process
* transfer control to the child process
* transfer control to another process

Exec()

#include <unistd.h>

int execle(const char *pathname, const char *arg,
/* , (char *) NULL, char *const envp[] *);
int execlp(const char *filename, const char *arg, ...
/* , (char *) NULL */);
int execvp(const char *filename, char *const argv[]);
int execv(const char *pathname, char *const argv[]);
int execl(const char *pathname, const char *arg, ...
/* , (char *) NULL */);

None of the above returns on success; all return -1 on error

Function | Specification Specification | Source of
of program file | of arguments | environment
(= p) (1) (e)
execve(| pathname array envfp argument
execlef) pathname list envp argument
execlp() filename + PATH | list caller’s environ
execop() filename + PATH | array caller’s environ
exece() pathname array caller’s envtron
execl() pathname list caller’s environ

Examples...

Linux find

SySt e | I l Listing 27-8: An implementation of system() that excludes signal handling

procexec/simple_system.c

#include <unistd.h>
#include <sys/wait.h>

#include <sys/types.h>
#include <stdlib.h>

int
int system(const char *command); system(char *command)

See main text for a description of return value

int status;

pid_t childPid;

switch (childPid = fork()) {
case -1: /* Error */
return -1;

case 0: /* Child */
execl("/bin/sh", "sh", "-c", command, (char *) NULL);

_exit(127); /* Failed exec */

Foreground process group default: /* Parent */

S I if (waitpid(childPid, &status, 0) == -1)
I -1:

: calling process 4—:— Caller of system() dsereturn L
: Jork(), exec() | } return status;
| J |
: sh 4—:— Child shell created by system() }
E fork(), exec() | procexec/simple_system.c
I y I Child process created by
! sleep 47: shell (executes command
'L ________________ I given to system())

Figure 27-2: Arrangement of processes during execution of system(“sleep 20”)

