
CS 3113

System Calls (Kerrisk, Ch. 3)
man syscalls

CG and AHF: Introduction to Operating Systems

User-Space Programs: Accessing Resources

• A user-space program has a set of its own resources including the
stack, heap and process state

• But, the program often needs to access resources that are shared in
some way with other programs

• It is the job of the operating system to make this sharing as safe as
possible

CG and AHF: Introduction to Operating Systems

Syscall Process: all about safety

• There is one common entry point for all system calls: this is done
through the sys call “trap” instruction

• Each sys call is referenced using a unique number

• Each has its own set of arguments to be transferred

• The trap instruction switches the processor state from user to kernel
mode

• The trap handler function then translates the sys call number into an
appropriate function call

CG and AHF: Introduction to Operating Systems

CG and AHF: Introduction to Operating Systems

Key Details

• All system call wrappers will return a value indicating success/status
or an error
• See the system call’s man page for details about the meaning of the return

value

• int errno is a global variable that is set by the kernel side of the
system call to provide more details about any error that has occurred
• Many system calls return -1 to indicate an error; then, you can use errno to

extract additional meaning

• A variety of available functions will make it easy to translate the error
number into a textual description

CG and AHF: Introduction to Operating Systems

Syscall: open

CG and AHF: Introduction to Operating Systems

Examples

• open()
• returns -1 on error. Check for errors!

• or an integer file descriptor if successful

• man is your friend here

• errExit(<str>)
• prints <str> and a description of the error encoded by errno to STDERR

• and then exits your program

• Defined in the TLPI library

• perror(<str>)
• prints <str> and a description of the error to STDOUT

• Defined in stdio
CG and AHF: Introduction to Operating Systems

More Syscalls

CG and AHF: Introduction to Operating Systems

Key Details

• size_t: unsigned integer to indicate the size of some object
• This is an architecture-independent type

• Remember that int is not architecture-independent

• ssize_t: signed integer to indicate the size of an object, but negative
values can be used to indicate errors

• void *buffer: a pointer to a buffer of some unknown type
• The programmer is responsible for making sure that the buffer is big enough

to fit the size parameter

• This is a huge source of bugs! So, be careful here

CG and AHF: Introduction to Operating Systems

Syscalls without the wrapper

• http://man7.org/linux/man-pages/man2/syscall.2.html

CG and AHF: Introduction to Operating Systems

Portability

• Many different versions of the same library

• Multiple sources of libraries that are all unix-like

• Different architectures use different data sizes (int, long, float, …)

• Can write code that checks to make sure that one has the right
versions of everything

• Can also write code that compiles across these different versions

Macros can help with defining the compiling context...

CG and AHF: Introduction to Operating Systems

Macros and the C Preprocessor (CPP)
• Macro with no specific value:

#define MY_CONTEXT

• Can then write code that compiles conditionally on the fact that a
macro has been defined:

#ifdef MY_CONTEXT

<some C code>

#else

<some different C code>

#endif

CG and AHF: Introduction to Operating Systems

Macros

• Macro with a specific value:

#define MY_VERSION 3

• Can use MY_VERSION as if it were a constant:

printf(“My version is: %d\n”, MY_VERSION)

Many other macro options …

CG and AHF: Introduction to Operating Systems

Macros
• Macros can also be defined with a compiler option:

gcc –DMY_CONTEXT hello.c –o hello

• Values can also be assigned:

gcc –DMY_VERSION=5 hello.c –o hello

CG and AHF: Introduction to Operating Systems

CG and AHF: Introduction to Operating Systems

strace

• strace ./a.out

• strace ls

• strace –e open ls

• strace -e trace=open,read ls /home

• strace -c ls /home

CG and AHF: Introduction to Operating Systems

