CS 3113

System Calls (Kerrisk, Ch. 3)

User-Space Programs: Accessing Resources

* A user-space program has a set of its own resources including the
stack, heap and process state

* But, the program often needs to access resources that are shared in
some way with other programs

* It is the job of the operating system to make this sharing as safe as
possible

Syscall Process: all about safety

* There is one common entry point for all system calls: this is done
through the sys call “trap” instruction

e Each sys call is referenced using a unique number
* Each has its own set of arguments to be transferred

* The trap instruction switches the processor state from user to kernel
mode

* The trap handler function then translates the sys call number into an
appropriate function call

P — - - UserMode - - --------—--- -

: Application glibc wrapper function :
| program (sysdeps/unix/ |
: sysv/linux/execve.c) |
|
: execve(path, argv, envp) |
| / { :
| .
|
' e int 0x80 = :
: execve(path, (arguments: __NR_execve, '
' argv, envp); — = |
| path, argv, envp) |
: ‘—__\—__——____ PN - |
|
| [return; :

[}
| ! &
o -

g
P ———————— Kernel Mode - - - - - - - - - - - - - - | §
: System call Trap handler : gﬂ
: service routine (arch/x86/kernel/entry 32.5) I
I (arch/x86/kernel/ : ®
: process_32.c) system call: - |
I sys_execve() :

I

- I
| [call sys_call_table |
: [__NR_execve] I
I I B I
| return error; :
|} - |
: I
e o

Figure 3-1: Steps in the executioirofcacsystenteatle Systems

apouL 4asn 0] Youms

Key Details

* All system call wrappers will return a value indicating success/status
or an error
* See the system call’s man page for details about the meaning of the return
value

* int errno isa global variable that is set by the kernel side of the
system call to provide more details about any error that has occurred

* Many system calls return -1 to indicate an error; then, you can use errno to
extract additional meaning

* A variety of available functions will make it easy to translate the error
number into a textual description

Syscall: open

Listing 4-2: Examples of the use of open()

/* Open existing file for reading */

fd = open("startup”, O RDONLY);
if (fd -1)
errExit("open");

/* Open new or existing file for reading and writing, trun
bytes; file permissions read+write for owner, nothing f¢

fd = open("myfile", O RDWR | O CREAT | O TRUNC, S IRUSR | ¢
if (fd -1)
errkxit("open”);

/* Open new or existing file for writing; writes should als
append to end of file */

Table 4-3: Values for the flags argument of open()

Flag Purpose SuUSs?
0_RDONLY Open for reading only v3
0_WRONLY Open for writing only v3
0_RDWR Open for reading and writing v3
0 CLOEXEC Set the close-on-exec flag (since Linux 2.6.23) v4
0_CREAT Create file if it doesn’t already exist v3
0 _DIRECT File I/O bypasses buffer cache

0_DIRECTORY | Fail if pathname is not a directory v4
0_EXCL With 0_CREAT: create file exclusively v3
0_LARGEFILE | Used on 32-bit systems to open large files

0 NOATIME Don’t update file last access time on read() (since Linux 2.6.8)
0_NOCTTY Don’t let pathname become the controlling terminal v3
0_NOFOLLOW | Don’t dereference symbolic links v4
0 _TRUNC Truncate existing file to zero length v3
0_APPEND Writes are always appended to end of file v3
0_ASYNC Generate a signal when I/0 is possible

0 DSYNC Provide synchronized 1/0O data integrity (since Linux 2.6.33) v3
0_NONBLOCK | Open in nonblocking mode v3

fd = open("w.log", O WRONLY | O CREAT | O_TRUNC |

File descriptor

Purpose

S IRUSR | S _IWUSR);

if (fd -1)
errkxit("open”);

CGand AHF: Introducﬂon to Operatirﬁﬂ}aﬂdﬁrd cIrror

0
1

POSIX name | stdio stream
standard input | STDIN_FILENO | sidin
standard output | STDOUT_FILENO | stdout

STDERR_FILENO | stderr

Examples

* open()
* returns -1 on error. Check for errors!
e or an integer file descriptor if successful
* man is your friend here

* errExit(<str>)
* prints <str>and a description of the error encoded by errno to STDERR

* and then exits your program
* Defined in the TLPI library

* perror(<str>)
 prints <str> and a description of the error to STDOUT
e Defined in stdio

More Syscalls

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

Returns file descriptor, or -1 on error

#include <unistd.h>

ssize_t read(int fd, void *buffer, size_t count);

Returns number of bytes read, 0 on EOF, or -1 on error

#include <unistd.h>

ssize_t write(int fd, void *buffer, size t count),

Returns number of bytes written, or -1 on error

#include <unistd.h>
int close(int fd);

Returns-0 6l sticcess, o121 'eréreors ystems

Key Details

* size_t: unsigned integer to indicate the size of some object
e This is an architecture-independent type
* Remember that int is not architecture-independent

* ssize_t: signed integer to indicate the size of an object, but negative
values can be used to indicate errors

 void *buffer: a pointer to a buffer of some unknown type

* The programmer is responsible for making sure that the buffer is big enough
to fit the size parameter

* This is a huge source of bugs! So, be careful here

Syscalls without the wrapper

#include <unistd.h>
#include <sys/syscall.h> /* For SYS xxx definitions */

long syscall(long number, ...);

r

#include <unistd.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <signal.h>

int
main(int argc, char *argv[])
{
pid t tid;
tid = syscall(SYS gettid);
tid = syscall(SYS tgkill, getpid(), tid, SIGHUP);
}

 http://man7.org/linux/man-pages/man2/syscall.2.html

CG and AHF: Introduction to Operating Systems

Portability

* Many different versions of the same library
* Multiple sources of libraries that are all unix-like
* Different architectures use different data sizes (int, long, float, ...)

e Can write code that checks to make sure that one has the right
versions of everything

* Can also write code that compiles across these different versions

Macros can help with defining the compiling context...

Macros and the C Preprocessor (CPP)

* Macro with no specific value:
#define MY CONTEXT

* Can then write code that compiles conditionally on the fact that a
macro has been defined:

#ifdef MY CONTEXT

<some C code>

#else

<some different C code>
#endif

Macros

* Macro with a specific value:
fdefine MY VERSION 3

* Can use MY_VERSION as if it were a constant:
printf (*My version 1s: 3%d\n”, MY VERSION)

Many other macro options ...

Macros

* Macros can also be defined with a compiler option:
gcc —DMY CONTEXT hello.c —-o hello

* Values can also be assigned:
gcc —DMY VERSION=5 hello.c —-o hello

CG and AHF: Introduction to Operating Systems

strace

* strace ./a.out

e strace s

* strace —e open Is

* strace -e trace=open,read Is /home
e strace -c Is /home

