
Chapter 8

Virtual Memory

Operating

Systems:

Internals

and Design

Principles

Eighth Edition

William Stallings

Hardware and Control Structures

 Two characteristics fundamental to memory

management:

1) All memory references are logical addresses

that are dynamically translated into physical

addresses at run time

2) A process may be broken up into a number of

pieces that don’t need to be contiguously

located in main memory during execution

Hardware and Control Structures

 Two characteristics fundamental to memory

management:

1) Dynamic translation of logical to physical

addresses

2) A process may be broken up into a number of

pieces

 It is not necessary that all of the pages or segments

of a process be in main memory during execution!

 Operating system brings into main memory only a few

pieces of the program and the necessary data

 Resident set: portion of process that is in main memory

 Execution proceeds

 An interrupt is generated when an address is needed that is

not in main memory

 Operating system places the process into a Blocked state

Continued . . .

Execution of a Process

Piece of process that contains the logical address is

brought into main memory:

 Operating system issues a disk I/O Read request

 Another process is dispatched to run while the disk

I/O takes place

 An interrupt is issued when disk I/O is complete,

which causes the operating system to place the

affected process into the Ready state

Virtual Memory
Implications

 More processes may be maintained in main

memory

 Only load in some of the pieces of each process

 With so many processes in main memory, it is

very likely that some process will be in the Ready

state at any particular time

 A process may be larger than all of main memory

Virtual Memory
Definitions

 Virtual memory: the process of splitting active
processes across primary and secondary storage

 Virtual address space: portion of virtual memory
assigned to a process

 Virtual address: the logical address for a piece of
information associated with the process. Appears as if
it were a physical address

 Real address: the physical address for a piece of
information

A Challenge: Thrashing

 A state in which the OS spends more time

swapping virtual memory between primary and

secondary storage than on actually executing the

processes

 This is a serious challenge: to address this, the OS

will spend some resources on guessing which

parts of virtual memory are least likely to be used

in the near future

Principle of Locality

 Only a few pieces of a process will be needed over a short

period of time

 Program and data references within a process tend to

cluster

 Therefore it is possible to make intelligent guesses about

which pieces will be needed in the future

For virtual memory to be practical and
effective:

• Hardware must support paging and
segmentation

• Operating system must include software for
managing the movement of pages and/or
segments between secondary memory and
main memory

Approaches to Virtual
Memory

 Paging: only deal with fixed-size blocks of memory

 Solves external fragmentation, but subject to internal

fragmentation

 Segmentation:

 Solves internal fragmentation, but subject to external

fragmentation

 Limits on segment sizes can be substantial

 Hybrid paging and segmentation: compromise between

the two

Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Figure 8.1 Typical Memory Management Formats

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseControl Bits

P= present bit

M = Modified bit

Frame Table Entries

Includes:

 Frame number

 P control bit: is the page in main memory or not?

 M control bit: has the main memory copy of the

page been modified?

Segmentation tables maintain similar information

Page # Offset Frame #

Virtual Address Physical Address

Page

Frame

Offset

Offset

Figure 8.2 Address Translation in a Paging System

Program Paging Mechanism Main Memory

P
a
g
e
#

Page Table Ptrn bits

m bits

Register

Page Table

Frame #

+

Table Challenges

Virtual memory can be rather large

This means that we need very large

page/segment tables

Big waste of space, especially for small

processes

The fix: hierarchical tables

4-kbyte root

page table

4-Mbyte user

page table

Figure 8.3 A Two-Level Hierarchical Page Table

4-Gbyte user

address space

10 bits10 bits 12 bits

Root page

table ptr

Frame #

Virtual Address

4-kbyte page

table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

Page

Frame

Offset

Figure 8.4 Address Translation in a Two-Level Paging System

+ +

Program Paging Mechanism Main Memory

 Total size of all tables is much smaller than with

monolithic tables

 But, the size must be big enough to cover all of the

virtual memory space for the process (which is still

relatively large)

 Page number portion of a virtual address is mapped by a

hash value

 The hash value is the index into the inverted page table

 The inverted page table entry maintains a pointer to the

first candidate frame

 Collisions are handled through additional chaining to

other table entries

 Need only one table entry per physical memory frame

Page # Offset

Frame #

m bits

m bits

n bits

n bits

Virtual Address

hash

function

Page #

Process

ID

Control

bits

Chain

Inverted Page Table

(one entry for each

physical memory frame)

Real Address

Offset

Figure 8.5 Inverted Page Table Structure

i

0

j

2m 1

Algorithm:

 Hash function: n bits -> m bits

 Compare n bits to table entry n bits

 If match, then the m bits tell us the frame #;

append this to the offset and we are done

 If no match, then follow the chain. Repeat

comparison

 If at the end of the chain: raise an interrupt

 Up to now: a memory access by the program

actually requires at least two memory accesses:

 Look up the page table entry

 Actually access the memory

 Translation Look-aside Buffer adds:

 A cache for the page table access

 Look-up is associative

Page # Offset

Frame #

Virtual Address

Offset

Figure 8.6 Use of a Translation Lookaside Buffer

Offset

Load

page
Page Table

Main Memory
Secondary

Memory

Real Address

Translation

Lookaside Buffer

TLB hit

TLB miss

Page fault

Algorithm: Does the TLB cache contain an entry for the page #?

 Yes (cache hit): append entry’s frame # to the offset & we are

done

 No (cache miss): fetch the page table entry from memory

 Append frame # to the offset

 Copy entry into the cache

 If there is no page table entry: page fault

 Must request that the page be fetched from secondary

memory

Page Size

The smaller the page size, the lesser the internal fragmentation

 However, more pages are required per process

 More pages per process means larger page tables

 For large programs in a heavily multiprogrammed

environment, some portion of the page tables of active

processes must be in virtual memory instead of main

memory

 The physical characteristics of most secondary-memory

devices favor a larger page size for more efficient block

transfer of data

P

(a) Page Size

Figure 8.10 Typical Paging Behavior of a Program

P
a
g

e
F

a
u

lt
 R

a
te

NW

(b) Number of Page Frames Allocated

P
a
g

e
F

a
u

lt
 R

a
te

P = size of entire process

W = working set size

N = total number of pages in process

Computer Page Size

Atlas 512 48-bit words

Honeywell-Multics 1024 36-bit words

IBM 370/XA and 370/ESA 4 Kbytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 Kbytes to 16 Mbytes

UltraSPARC 8 Kbytes to 4 Mbytes

Pentium 4 Kbytes or 4 Mbytes

IBM POWER 4 Kbytes

Itanium 4 Kbytes to 256 Mbytes

Table 8.3

Example

Page

Sizes

Page Size

 Contemporary programming

techniques used in large

programs tend to decrease the

locality of references within a

process

the design issue of
page size is related to
the size of physical
main memory and

program size

main memory is
getting larger and

address space used by
applications is also

growing

most obvious on
personal computers

where applications are
becoming increasingly

complex

Segmentation

Segmentation allows

the programmer to

view memory as

consisting of multiple

address spaces or

segments

Advantages:

• Simplifies handling of
growing data
structures

• Allows programs to be
altered and recompiled
independently

• Lends itself to sharing
data among processes

• Lends itself to
protection

Segment Organization

 Each segment table entry contains the starting address of

the corresponding segment in main memory and the length

of the segment

 A bit is needed to determine if the segment is already in

main memory

 Another bit is needed to determine if the segment has been

modified since it was loaded in main memory

Seg #

S
eg

 #

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

S
eg

m
en

t

Base + d

d

Figure 8.11 Address Translation in a Segmentation System

+

+

Program Segmentation mechanism Main memory

Combined Paging and
Segmentation

In a combined
paging/segmentation system

a user’s address space is
broken up into a number of
segments. Each segment is
broken up into a number of
fixed-sized pages which are
equal in length to a main

memory frame

Segmentation is visible to the
programmer

Paging is transparent to the
programmer

Page #Seg #

S
eg

#

Offset

Seg Table Ptr

Frame #

Virtual Address

Segment

Table
Page

Table

Page

Frame

Offset

Offset

Figure 8.12 Address Translation in a Segmentation/Paging System

+ +

P
a

g
e
#

Program Segmentation

Mechanism

Paging

Mechanism

Main Memory

Virtual Address

Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address

Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Figure 8.1 Typical Memory Management Formats

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseControl Bits

P= present bit

M = Modified bit

Protection and Sharing

Segmentation lends itself to the

implementation of protection and sharing

policies

Each entry has a base address and length so

inadvertent memory access can be controlled

Sharing can be achieved by multiple

processes referencing the same segment

Operating System Software

The design of the memory management
portion of an operating system depends on
three fundamental areas of choice:

• Whether or not to use virtual memory techniques

• The use of paging or segmentation … or both

• The algorithms employed for various aspects of
memory management

Fetch Policy

 Demand paging

 Prepaging

Placement Policy

Replacement Policy

 Basic Algorithms

 Optimal

 Least recently used (LRU)

 First-in-first-out (FIFO)
 Clock
 Page Buffering

Resident Set Management

 Resident set size

 Fixed

 Variable
 Replacement Scope

 Global

 Local

Cleaning Policy

 Demand

 Precleaning

Load Control
 Degree of multiprogramming

Table 8.4 Operating System Policies for Virtual Memory

Determines when

a page should be

brought into

memory

Two main
types:

Demand
Paging

Prepaging

Demand Paging

 Only brings pages into main memory when a

reference is made to a location on the page

 Many page faults when process is first started

 Principle of locality suggests that as more and

more pages are brought in, most future references

will be to pages that have recently been brought in,

and page faults should drop to a very low level

Prepaging

 Pages other than the one demanded by a page fault are

brought in

 Exploits the characteristics of most secondary memory

devices

 If pages of a process are stored contiguously in secondary

memory it is more efficient to bring in a number of pages at

one time

 Ineffective if extra pages are not referenced in the near

future

 Should not be confused with “swapping”

Replacement Policy

 Deals with the selection of a page in main memory

to be replaced when a new page must be brought in

 The goal is that the page that is removed be

the page least likely to be referenced in the

near future

 The more elaborate the replacement policy the

greater the hardware and software overhead to

implement it

Algorithms used for
the selection of a
page to replace:

• Optimal

• Least recently used (LRU)

• First-in-first-out (FIFO)

• Clock

Least Recently Used
(LRU)

 Replaces the page that has not been referenced

for the longest time

 By the principle of locality, this should be the

page least likely to be referenced in the near

future

 Difficult to implement

 One approach is to tag each page with the time

of last reference

 This requires a great deal of overhead

First-in-First-out (FIFO)

 Treats page frames allocated to a process as a

circular buffer

 Pages are removed in round-robin style

 Simple replacement policy to implement

 Page that has been in memory the longest is

replaced

Clock Policy

 Requires the association of an additional bit with each

frame

 referred to as the use bit

 When a page is first loaded in memory or referenced, the

use bit is set to 1

 The set of frames is considered to be a circular buffer

 Any frame with a use bit of 1 is passed over by the

algorithm

 Page frames visualized as laid out in a circle

2

2 3 2 1 5 2 4 5 3 2 5 2

2
3

2
3

2
3
1

F

F

F F F F F F

F F F

F F

2
3
5

2
3
5

4
3
5

4
3
5

4
3
5

2
3
5

2
3
5

2
3
5

2 2
3

2
3

2
3
1

2
5
1

2
5
1

2
5
4

2
5
4

3
5
4

3
5
2

3
5
2

3
5
2

2 2
3

2
3

2
3
1

5
3
1

5
2
1

5
2
4

5
2
4

3
2
4

3
2
4

3
5
4

3
5
2

2* 2*
3*

2*
3*

2*
3*
1*

5*
3
1

F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*
2*
1

5*
2*
4*

5*
2*
4*

3*
2
4

3*
2*
4

3*
2

5*

3*
2*
5*

OPT

Page address

stream

LRU

FIFO

CLOCK

Figure 8.14 Behavior of Four Page-Replacement Algorithms

0
6 8

Number of Frames Allocated

P
a

g
e

F
a

u
lt

s
p

er
 1

0
0

0
 R

ef
er

en
ce

s

Figure 8.16 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

Summary

Translating logical addresses to physical ones

Page tables, segment tables, inverted page

tables translation lookahead buffers

Multi-level tables

Fetch policies

Replacement policies

