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Hardware and Control Structures

 Two characteristics fundamental to memory 

management:

1) All memory references are logical addresses 

that are dynamically translated into physical 

addresses at run time

2) A process may be broken up into a number of  

pieces that don’t need to be contiguously 

located in main memory during execution



Hardware and Control Structures

 Two characteristics fundamental to memory 

management:

1) Dynamic translation of  logical to physical 

addresses 

2) A process may be broken up into a number of  

pieces 

 It is not necessary that all of the pages or segments 

of a process be in main memory during execution!



 Operating system brings into main memory only a few 

pieces of  the program and the necessary data

 Resident set: portion of  process that is in main memory

 Execution proceeds

 An interrupt is generated when an address is needed that is 

not in main memory

 Operating system places the process into a Blocked state

Continued . . .



Execution of a Process

Piece of  process that contains the logical address is 

brought into main memory:

 Operating system issues a disk I/O Read request

 Another process is dispatched to run while the disk 

I/O takes place

 An interrupt is issued when disk I/O is complete, 

which causes the operating system to place the 

affected process into the Ready state



Virtual Memory 
Implications

 More processes may be maintained in main 

memory

 Only load in some of  the pieces of  each process

 With so many processes in main memory, it is 

very likely that some process will be in the Ready 

state at any particular time

 A process may be larger than all of  main memory



Virtual Memory 
Definitions

 Virtual memory: the process of  splitting active 
processes across primary and secondary storage

 Virtual address space: portion of  virtual memory 
assigned to a process

 Virtual address: the logical address for a piece of  
information associated with the process.  Appears as if  
it were a physical address

 Real address: the physical address for a piece of  
information



A Challenge: Thrashing

 A state in which the OS spends more time 

swapping virtual memory between primary and 

secondary storage than on actually executing the 

processes

 This is a serious challenge: to address this, the OS 

will spend some resources on guessing which 

parts of  virtual memory are least likely to be used 

in the near future



Principle of Locality

 Only a few pieces of  a process will be needed over a short 

period of  time

 Program and data references within a process tend to 

cluster

 Therefore it is possible to make intelligent guesses about 

which pieces will be needed in the future



For virtual memory to be practical and 
effective:

• Hardware must support paging and 
segmentation 

• Operating system must include software for 
managing the movement of  pages and/or 
segments between secondary memory and 
main memory



Approaches to Virtual 
Memory

 Paging: only deal with fixed-size blocks of  memory

 Solves external fragmentation, but subject to internal 

fragmentation

 Segmentation: 

 Solves internal fragmentation, but subject to external 

fragmentation

 Limits on segment sizes can be substantial

 Hybrid paging and segmentation: compromise between 

the two
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Frame Table Entries

Includes:

 Frame number

 P control bit: is the page in main memory or not?

 M control bit: has the main memory copy of  the 

page been modified?

Segmentation tables maintain similar information
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Table Challenges

Virtual memory can be rather large

This means that we need very large 

page/segment tables

Big waste of  space, especially for small 

processes

The fix: hierarchical tables
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 Total size of  all tables is much smaller than with 

monolithic tables

 But, the size must be big enough to cover all of  the 

virtual memory space for the process (which is still 

relatively large)



 Page number portion of  a virtual address is mapped by a 

hash value

 The hash value is the index into the inverted page table

 The inverted page table entry maintains a pointer to the 

first candidate frame

 Collisions are handled through additional chaining to 

other table entries

 Need only one table entry per physical memory frame
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Algorithm:

 Hash function: n bits -> m bits

 Compare n bits to table entry n bits

 If  match, then the m bits tell us the frame #; 

append this to the offset and we are done

 If  no match, then follow the chain.  Repeat 

comparison

 If  at the end of  the chain: raise an interrupt



 Up to now: a memory access by the program 

actually requires at least two memory accesses:

 Look up the page table entry

 Actually access the memory

 Translation Look-aside Buffer adds:

 A cache for the page table access

 Look-up is associative



Page # Offset

Frame #

Virtual Address

Offset

Figure 8.6  Use of a Translation Lookaside Buffer

Offset

Load

page
Page Table

Main Memory
Secondary

Memory

Real Address

Translation

Lookaside Buffer

TLB hit

TLB miss

Page fault



Algorithm:  Does the TLB cache contain an entry for the page #?

 Yes (cache hit): append entry’s frame # to the offset & we are 

done

 No (cache miss): fetch the page table entry from memory

 Append frame # to the offset

 Copy entry into the cache

 If  there is no page table entry: page fault

 Must request that the page be fetched from secondary 

memory



Page Size

The smaller the page size, the lesser the internal fragmentation

 However, more pages are required per process

 More pages per process means larger page tables

 For large programs in a heavily multiprogrammed

environment, some portion of  the page tables of  active 

processes must be in virtual memory instead of  main 

memory

 The physical characteristics of  most secondary-memory 

devices favor a larger page size for more efficient block 

transfer of  data
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Computer Page Size 

Atlas 512 48-bit words 

Honeywell-Multics 1024 36-bit words 

IBM 370/XA and 370/ESA 4 Kbytes 

VAX family 512 bytes 

IBM AS/400 512 bytes 

DEC Alpha 8 Kbytes 

MIPS 4 Kbytes to 16 Mbytes 

UltraSPARC 8 Kbytes to 4 Mbytes 

Pentium 4 Kbytes or 4 Mbytes 

IBM POWER 4 Kbytes 

Itanium 4 Kbytes to 256 Mbytes 

 

Table 8.3 

Example 

Page 

Sizes



Page Size

 Contemporary programming 

techniques used in large 

programs tend to decrease the 

locality of  references within a 

process

the design issue of  
page size is related to 
the size of  physical 
main memory and 

program size

main memory is 
getting larger and 

address space used by 
applications is also 

growing

most obvious on 
personal computers 

where applications are 
becoming increasingly 

complex



Segmentation

Segmentation allows 

the programmer to 

view memory as 

consisting of  multiple 

address spaces or 

segments

Advantages:

• Simplifies handling of  
growing data 
structures

• Allows programs to be 
altered and recompiled 
independently

• Lends itself  to sharing 
data among processes

• Lends itself  to 
protection



Segment Organization

 Each segment table entry contains the starting address of  

the corresponding segment in main memory and the length 

of  the segment

 A bit is needed to determine if  the segment is already in 

main memory

 Another bit is needed to determine if  the segment has been 

modified since it was loaded in main memory
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Combined Paging and 
Segmentation

In a combined 
paging/segmentation system 

a user’s address space is 
broken up into a number of  
segments. Each segment is 
broken up into a number of  
fixed-sized pages which are 
equal in length to a main 

memory frame

Segmentation is visible to the 
programmer

Paging is transparent to the 
programmer
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Figure 8.1 Typical Memory Management Formats
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Protection and Sharing

Segmentation lends itself  to the 

implementation of  protection and sharing 

policies

Each entry has a base address and length so 

inadvertent memory access can be controlled

Sharing can be achieved by multiple 

processes referencing the same segment





Operating System Software

The design of  the memory management 
portion of  an operating system depends on 
three fundamental areas of  choice:

• Whether or not to use virtual memory techniques

• The use of  paging or segmentation … or both

• The algorithms employed for various aspects of  
memory management



Fetch Policy 

 Demand paging 

 Prepaging 

 
Placement Policy 

 

Replacement Policy 

 Basic Algorithms 

  Optimal 

  Least recently used (LRU) 

  First-in-first-out (FIFO) 
  Clock 
 Page Buffering 

Resident Set Management 

 Resident set size 

  Fixed 

  Variable 
 Replacement Scope 

  Global 

  Local 

 

Cleaning Policy 

 Demand 

 Precleaning 
 

Load Control 
 Degree of multiprogramming 

 

Table 8.4   Operating System Policies for Virtual Memory



Determines when 

a page should be 

brought into 

memory

Two main 
types:

Demand 
Paging 

Prepaging



Demand Paging 

 Only brings pages into main memory when a 

reference is made to a location on the page

 Many page faults when process is first started 

 Principle of  locality suggests that as more and 

more pages are brought in, most future references 

will be to pages that have recently been brought in, 

and page faults should drop to a very low level



Prepaging

 Pages other than the one demanded by a page fault are 

brought in

 Exploits the characteristics of  most secondary memory 

devices

 If  pages of  a process are stored contiguously in secondary 

memory it is more efficient to bring in a number of  pages at 

one time

 Ineffective if  extra pages are not referenced in the near 

future

 Should not be confused with “swapping”



Replacement Policy

 Deals with the selection of  a page in main memory 

to be replaced when a new page must be brought in

 The goal is that the page that is removed be 

the page least likely to be referenced in the 

near future

 The more elaborate the replacement policy the 

greater the hardware and software overhead to 

implement it



Algorithms used for 
the selection of  a 
page to replace:

• Optimal

• Least recently used (LRU)

• First-in-first-out (FIFO)

• Clock



Least Recently Used 
(LRU)

 Replaces the page that has not been referenced 

for the longest time

 By the principle of  locality, this should be the 

page least likely to be referenced in the near 

future

 Difficult to implement

 One approach is to tag each page with the time 

of  last reference

 This requires a great deal of  overhead



First-in-First-out (FIFO)

 Treats page frames allocated to a process as a 

circular buffer

 Pages are removed in round-robin style

 Simple replacement policy to implement

 Page that has been in memory the longest is 

replaced



Clock Policy

 Requires the association of  an additional bit with each 

frame

 referred to as the use bit

 When a page is first loaded in memory or referenced, the 

use bit is set to 1

 The set of  frames is considered to be a circular buffer

 Any frame with a use bit of  1 is passed over by the 

algorithm

 Page frames visualized as laid out in a circle
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Summary

Translating logical addresses to physical ones

Page tables, segment tables, inverted page 

tables translation lookahead buffers

Multi-level tables

Fetch policies

Replacement policies


