
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10: Virtual Memory

10.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10: Virtual Memory

! Background
! Demand Paging
! Copy-on-Write
! Page Replacement
! Allocation of Frames
! Thrashing
! Memory-Mapped Files
! Allocating Kernel Memory
! Other Considerations
! Operating-System Examples

10.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

! Define virtual memory and describe its benefits.
! Illustrate how pages are loaded into memory using demand

paging.
! Apply the FIFO, optimal, and LRU page-replacement

algorithms.
! Describe the working set of a process, and explain how it is

related to program locality.
! Describe how Linux, Windows 10, and Solaris manage virtual

memory.
! Design a virtual memory manager simulation in the C

programming language.

10.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

! Code needs to be in memory to execute, but entire program
rarely used
! Error code, unusual routines, large data structures

! Entire program code not needed at same time
! Consider ability to execute partially-loaded program

! Program no longer constrained by limits of physical memory
! Each program takes less memory while running -> more

programs run at the same time
4 Increased CPU utilization and throughput with no

increase in response time or turnaround time
! Less I/O needed to load or swap programs into memory ->

each user program runs faster

10.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory

! Virtual memory – separation of user logical memory from
physical memory
! Only part of the program needs to be in memory for

execution
! Logical address space can therefore be much larger than

physical address space
! Allows address spaces to be shared by several

processes
! Allows for more efficient process creation
! More programs running concurrently
! Less I/O needed to load or swap processes

10.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory (Cont.)

! Virtual address space – logical view of how process is
stored in memory
! Usually start at address 0, contiguous addresses until

end of space
! Meanwhile, physical memory organized in page frames
! MMU must map logical to physical

! Virtual memory can be implemented via:
! Demand paging
! Demand segmentation

10.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual Memory That is Larger Than Physical Memory

10.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual-address Space

" Usually design logical address space for
stack to start at Max logical address and
grow “down” while heap grows “up”
! Maximizes address space use
! Unused address space between

the two is hole
4 No physical memory needed

until heap or stack grows to a
given new page

" Enables sparse address spaces with
holes left for growth, dynamically linked
libraries, etc

" System libraries shared via mapping into
virtual address space

" Shared memory by mapping pages read-
write into virtual address space

" Pages can be shared during fork(),
speeding process creation

10.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Library Using Virtual Memory

10.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging
" Could bring entire process into memory at load time
" Or bring a page into memory only when it is needed

! Less I/O needed, no unnecessary I/O
! Less memory needed
! Faster response
! More users

" Similar to paging system with swapping (diagram on right)
" Page is needed Þ reference to it

! invalid reference Þ abort
! not-in-memory Þ bring to memory

" Lazy swapper – never swaps a page into memory unless page will be
needed
! Swapper that deals with pages is a pager

10.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

" Could bring entire process into memory
at load time

" Or bring a page into memory only when
it is needed
! Less I/O needed, no unnecessary

I/O
! Less memory needed
! Faster response
! More users

" Similar to paging system with swapping
(diagram on right)

10.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

! With swapping, pager guesses which pages will be used before
swapping out again

! Instead, pager brings in only those pages into memory
! How to determine that set of pages?

! Need new MMU functionality to implement demand paging
! If pages needed are already memory resident

! No difference from non demand-paging
! If page needed and not memory resident

! Need to detect and load the page into memory from storage
4 Without changing program behavior
4 Without programmer needing to change code

10.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid-Invalid Bit
! With each page table entry a valid–invalid bit is associated

(v Þ in-memory – memory resident, i Þ not-in-memory)
! Initially valid–invalid bit is set to i on all entries
! Example of a page table snapshot:

! During MMU address translation, if valid–invalid bit in page
table entry is i Þ page fault

10.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Table When Some Pages Are Not in Main Memory

10.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling Page Fault

1. If there is a reference to a page, first reference to that page
will trap to operating system
! Page fault

2. Operating system looks at another table to decide:
! Invalid reference Þ abort
! Just not in memory

3. Find free frame
4. Swap page into frame via scheduled disk operation
5. Reset tables to indicate page now in memory

Set validation bit = v
6. Restart the instruction that caused the page fault

10.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling a Page Fault (Cont.)

10.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Aspects of Demand Paging
! Extreme case – start process with no pages in memory

! OS sets instruction pointer to first instruction of process,
non-memory-resident -> page fault

! And for every other process pages on first access
! Pure demand paging

! Actually, a given instruction could access multiple pages ->
multiple page faults
! Consider fetch and decode of instruction which adds 2

numbers from memory and stores result back to memory
! Pain decreased because of locality of reference

! Hardware support needed for demand paging
! Page table with valid / invalid bit
! Secondary memory (swap device with swap space)
! Instruction restart

10.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Instruction Restart

! Consider an instruction that could access several different
locations
! Block move

! Auto increment/decrement location
! Restart the whole operation?

4 What if source and destination overlap?

10.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free-Frame List

! When a page fault occurs, the operating system must bring
the desired page from secondary storage into main memory.

! Most operating systems maintain a free-frame list -- a pool
of free frames for satisfying such requests.

! Operating system typically allocate free frames using a
technique known as zero-fill-on-demand -- the content of
the frames zeroed-out before being allocated.

! When a system starts up, all available memory is placed on
the free-frame list.

10.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stages in Demand Paging – Worse Case

1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the

location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is
serviced

2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

10.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stages in Demand Paging (Cont.)

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O

completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now

in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page

table, and then resume the interrupted instruction

10.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Performance of Demand Paging

! Three major activities
! Service the interrupt – careful coding means just several

hundred instructions needed
! Read the page – lots of time
! Restart the process – again just a small amount of time

! Page Fault Rate 0 £ p £ 1
! if p = 0 no page faults
! if p = 1, every reference is a fault

! Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in)

10.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging Example
! Memory access time = 200 nanoseconds
! Average page-fault service time = 8 milliseconds
! EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

! If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!
! If want performance degradation < 10 percent

! 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p

! p < .0000025
! < one page fault in every 400,000 memory accesses

10.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging Optimizations
" Swap space I/O faster than file system I/O even if on the same device

! Swap allocated in larger chunks, less management needed than file
system

" Copy entire process image to swap space at process load time
! Then page in and out of swap space
! Used in older BSD Unix

" Demand page in from program binary on disk, but discard rather than paging
out when freeing frame
! Used in Solaris and current BSD
! Still need to write to swap space

4 Pages not associated with a file (like stack and heap) – anonymous
memory

4 Pages modified in memory but not yet written back to the file system
" Mobile systems

! Typically don’t support swapping
! Instead, demand page from file system and reclaim read-only pages

(such as code)

10.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Copy-on-Write

" Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory
! If either process modifies a shared page, only then is the page copied

" COW allows more efficient process creation as only modified pages are
copied

" In general, free pages are allocated from a pool of zero-fill-on-demand
pages
! Pool should always have free frames for fast demand page execution

4 Don’t want to have to free a frame as well as other processing on
page fault

! Why zero-out a page before allocating it?
" vfork() variation on fork() system call has parent suspend and child

using copy-on-write address space of parent
! Designed to have child call exec()
! Very efficient

10.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Before Process 1 Modifies Page C

10.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

After Process 1 Modifies Page C

10.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What Happens if There is no Free Frame?

! Used up by process pages
! Also in demand from the kernel, I/O buffers, etc
! How much to allocate to each?
! Page replacement – find some page in memory, but not

really in use, page it out
! Algorithm – terminate? swap out? replace the page?
! Performance – want an algorithm which will result in

minimum number of page faults
! Same page may be brought into memory several times

10.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

! Prevent over-allocation of memory by modifying
page-fault service routine to include page replacement

! Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk

! Page replacement completes separation between
logical memory and physical memory – large virtual
memory can be provided on a smaller physical
memory

10.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Need For Page Replacement

10.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Page Replacement

1. Find the location of the desired page on disk
2. Find a free frame:

- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update
the page and frame tables

4. Continue the process by restarting the instruction that
caused the trap

Note now potentially 2 page transfers for page fault –
increasing EAT

10.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

10.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page and Frame Replacement Algorithms

! Frame-allocation algorithm determines
! How many frames to give each process
! Which frames to replace

! Page-replacement algorithm
! Want lowest page-fault rate on both first access and re-access

! Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string
! String is just page numbers, not full addresses
! Repeated access to the same page does not cause a page fault
! Results depend on number of frames available

! In all our examples, the reference string of referenced page
numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

10.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Graph of Page Faults Versus The Number of Frames

10.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

First-In-First-Out (FIFO) Algorithm
! Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
! 3 frames (3 pages can be in memory at a time per process)

! Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
! Adding more frames can cause more page faults!

4 Belady’s Anomaly
! How to track ages of pages?

! Just use a FIFO queue

15 page faults\

10.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

FIFO Illustrating Belady’s Anomaly

n
u

m
b

e
r

o
f

p
a

g
e

 f
a

u
lts

16

14

12

10

8

6

4

2

1 2 3
number of frames

4 5 6 7

10.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Optimal Algorithm

! Replace page that will not be used for longest period of time
! 9 is optimal for the example

! How do you know this?
! Can’t read the future

! Used for measuring how well your algorithm performs

10.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Least Recently Used (LRU) Algorithm
! Use past knowledge rather than future
! Replace page that has not been used in the most amount of time
! Associate time of last use with each page

! 12 faults – better than FIFO but worse than OPT
! Generally good algorithm and frequently used
! But how to implement?

10.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Algorithm (Cont.)
! Counter implementation

! Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

! When a page needs to be changed, look at the counters to find
smallest value
4 Search through table needed

! Stack implementation
! Keep a stack of page numbers in a double link form:
! Page referenced:

4 move it to the top
4 requires 6 pointers to be changed

! But each update more expensive
! No search for replacement

! LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly

10.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Use Of A Stack to Record Most Recent Page References

2

1

0

4

7

stack
before

a

7

2

1

4

0

stack
after

b

reference string

4 7 0 7 1 0 1 2 1 2 27

a b

1

10.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Approximation Algorithms
! LRU needs special hardware and still slow
! Reference bit

! With each page associate a bit, initially = 0
! When page is referenced bit set to 1
! Replace any with reference bit = 0 (if one exists)

4 We do not know the order, however
! Second-chance algorithm

! Generally FIFO, plus hardware-provided reference bit
! Clock replacement
! If page to be replaced has

4 Reference bit = 0 -> replace it
4 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

10.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Second-Chance (clock) Page-Replacement Algorithm

circular queue of pages

(a)

next
victim

0

reference
bits

pages

0

1

1

0

1

1

……

circular queue of pages

(b)

0

reference
bits

pages

0

0

0

0

1

1

……

10.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Enhanced Second-Chance Algorithm

! Improve algorithm by using reference bit and modify bit (if
available) in concert

! Take ordered pair (reference, modify):
! (0, 0) neither recently used not modified – best page to

replace
! (0, 1) not recently used but modified – not quite as good,

must write out before replacement
! (1, 0) recently used but clean – probably will be used again

soon
! (1, 1) recently used and modified – probably will be used

again soon and need to write out before replacement
! When page replacement called for, use the clock scheme but

use the four classes replace page in lowest non-empty class
! Might need to search circular queue several times

10.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Counting Algorithms

! Keep a counter of the number of references that have been
made to each page
! Not common

! Lease Frequently Used (LFU) Algorithm: replaces page
with smallest count

! Most Frequently Used (MFU) Algorithm: based on the
argument that the page with the smallest count was probably
just brought in and has yet to be used

10.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page-Buffering Algorithms
! Keep a pool of free frames, always

! Then frame available when needed, not found at fault time
! Read page into free frame and select victim to evict and add

to free pool
! When convenient, evict victim

! Possibly, keep list of modified pages
! When backing store otherwise idle, write pages there and set

to non-dirty
! Possibly, keep free frame contents intact and note what is in

them
! If referenced again before reused, no need to load contents

again from disk
! Generally useful to reduce penalty if wrong victim frame

selected

10.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Applications and Page Replacement

! All of these algorithms have OS guessing about future page
access

! Some applications have better knowledge – i.e. databases
! Memory intensive applications can cause double buffering

! OS keeps copy of page in memory as I/O buffer
! Application keeps page in memory for its own work

! Operating system can given direct access to the disk, getting
out of the way of the applications
! Raw disk mode

! Bypasses buffering, locking, etc

10.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Allocation of Frames

! Each process needs minimum number of frames
! Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
! instruction is 6 bytes, might span 2 pages
! 2 pages to handle from
! 2 pages to handle to

! Maximum of course is total frames in the system
! Two major allocation schemes

! fixed allocation
! priority allocation

! Many variations

10.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fixed Allocation
! Equal allocation – For example, if there are 100 frames (after

allocating frames for the OS) and 5 processes, give each process
20 frames
! Keep some as free frame buffer pool

! Proportional allocation – Allocate according to the size of process
! Dynamic as degree of multiprogramming, process sizes

change

m
S
spa

m
sS

ps

i
ii

i

ii

´==

=
å=

=

 for allocation

frames of number total

 process of size
m = 64
s1=10
s2 =127

a1 =
10
137

×62 ≈ 4

a2 =
127
137

×62 ≈ 57

10.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Global vs. Local Allocation

! Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another
! But then process execution time can vary greatly
! But greater throughput so more common

! Local replacement – each process selects from only
its own set of allocated frames
! More consistent per-process performance
! But possibly underutilized memory

10.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

! A strategy to implement global page-replacement policy
! All memory requests are satisfied from the free-frame

list, rather than waiting for the list to drop to zero before
we begin selecting pages for replacement,

! Page replacement is triggered when the list falls below
a certain threshold.

! This strategy attempts to ensure there is always
sufficient free memory to satisfy new requests.

Reclaiming Pages

10.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Reclaiming Pages Example

10.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Non-Uniform Memory Access
! So far all memory accessed equally
! Many systems are NUMA – speed of access to memory varies

! Consider system boards containing CPUs and memory,
interconnected over a system bus

! NUMA multiprocessing architecture

10.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Non-Uniform Memory Access (Cont.)
! Optimal performance comes from allocating memory “close to”

the CPU on which the thread is scheduled
! And modifying the scheduler to schedule the thread on the

same system board when possible
! Solved by Solaris by creating lgroups

4 Structure to track CPU / Memory low latency groups
4 Used my schedule and pager
4 When possible schedule all threads of a process and

allocate all memory for that process within the lgroup

10.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thrashing

! If a process does not have “enough” pages, the page-fault
rate is very high
! Page fault to get page
! Replace existing frame
! But quickly need replaced frame back
! This leads to:

4 Low CPU utilization
4 Operating system thinking that it needs to increase the

degree of multiprogramming
4 Another process added to the system

10.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thrashing (Cont.)

! Thrashing. A process is busy swapping pages in and out

10.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging and Thrashing
! Why does demand paging work?

Locality model
! Process migrates from one locality to another
! Localities may overlap

! Why does thrashing occur?

S size of locality > total memory size

! Limit effects by using local or priority page replacement

10.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

p
a
g
e
 n

u
m

b
e
rs

m
e
m

o
ry

 a
d
d
re

ss

execution time

10.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Working-Set Model

! D º working-set window º a fixed number of page references
Example: 10,000 instructions

! WSSi (working set of Process Pi) = total number of pages
referenced in the most recent D (varies in time)
! if D too small will not encompass entire locality
! if D too large will encompass several localities
! if D = ¥ Þ will encompass entire program

! D = S WSSi º total demand frames
! Approximation of locality

10.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Working-Set Model (Cont.)

! if D > m Þ Thrashing
! Policy if D > m, then suspend or swap out one of the

processes

10.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Keeping Track of the Working Set

! Approximate with interval timer + a reference bit
! Example: D = 10,000

! Timer interrupts after every 5000 time units
! Keep in memory 2 bits for each page
! Whenever a timer interrupts copy and sets the values of

all reference bits to 0
! If one of the bits in memory = 1 Þ page in working set

! Why is this not completely accurate?
! Improvement = 10 bits and interrupt every 1000 time units

10.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page-Fault Frequency
! More direct approach than WSS
! Establish “acceptable” page-fault frequency (PFF) rate

and use local replacement policy
! If actual rate too low, process loses frame
! If actual rate too high, process gains frame

number of frames

increase number
of frames

upper bound

lower bound
decrease number
of frames

p
a
g
e
-f

a
u
lt

ra
te

10.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Working Sets and Page Fault Rates
! Direct relationship between working set of a process and its

page-fault rate
! Working set changes over time
! Peaks and valleys over time

10.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Allocating Kernel Memory

! Treated differently from user memory
! Often allocated from a free-memory pool

! Kernel requests memory for structures of varying sizes
! Some kernel memory needs to be contiguous

4 I.e. for device I/O

10.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Buddy System

! Allocates memory from fixed-size segment consisting of physically-
contiguous pages

! Memory allocated using power-of-2 allocator
! Satisfies requests in units sized as power of 2
! Request rounded up to next highest power of 2
! When smaller allocation needed than is available, current chunk

split into two buddies of next-lower power of 2
4 Continue until appropriate sized chunk available

! For example, assume 256KB chunk available, kernel requests 21KB
! Split into AL and AR of 128KB each

4 One further divided into BL and BR of 64KB
– One further into CL and CR of 32KB each – one used to

satisfy request
! Advantage – quickly coalesce unused chunks into larger chunk
! Disadvantage - fragmentation

10.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Buddy System Allocator

physically contiguous pages

256 KB

128 KB
AL

64 KB
BR

64 KB
BL

32 KB
CL

32 KB
CR

128 KB
AR

10.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Slab Allocator
! Alternate strategy
! Slab is one or more physically contiguous pages
! Cache consists of one or more slabs
! Single cache for each unique kernel data structure

! Each cache filled with objects – instantiations of the data
structure

! When cache created, filled with objects marked as free
! When structures stored, objects marked as used
! If slab is full of used objects, next object allocated from empty

slab
! If no empty slabs, new slab allocated

! Benefits include no fragmentation, fast memory request
satisfaction

10.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Slab Allocation

3-KB
objects

7-KB
objects

kernel objects caches slabs

physically
contiguous
pages

10.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Slab Allocator in Linux
! For example process descriptor is of type struct task_struct
! Approx 1.7KB of memory
! New task -> allocate new struct from cache

! Will use existing free struct task_struct
! Slab can be in three possible states

1. Full – all used
2. Empty – all free
3. Partial – mix of free and used

! Upon request, slab allocator
1. Uses free struct in partial slab
2. If none, takes one from empty slab
3. If no empty slab, create new empty

10.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Slab Allocator in Linux (Cont.)

! Slab started in Solaris, now wide-spread for both kernel mode
and user memory in various OSes

! Linux 2.2 had SLAB, now has both SLOB and SLUB allocators
! SLOB for systems with limited memory

4 Simple List of Blocks – maintains 3 list objects for small,
medium, large objects

! SLUB is performance-optimized SLAB removes per-CPU
queues, metadata stored in page structure

10.70 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Other Considerations

! Prepaging
! Page size
! TLB reach
! Inverted page table
! Program structure
! I/O interlock and page locking

10.71 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Prepaging

! To reduce the large number of page faults that occurs at
process startup

! Prepage all or some of the pages a process will need, before
they are referenced

! But if prepaged pages are unused, I/O and memory was wasted
! Assume s pages are prepaged and α of the pages is used

! Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?

! α near zero Þ prepaging loses

10.72 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Size

! Sometimes OS designers have a choice
! Especially if running on custom-built CPU

! Page size selection must take into consideration:
! Fragmentation
! Page table size
! Resolution
! I/O overhead
! Number of page faults
! Locality
! TLB size and effectiveness

! Always power of 2, usually in the range 212 (4,096 bytes) to 222
(4,194,304 bytes)

! On average, growing over time

10.73 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

TLB Reach

! TLB Reach - The amount of memory accessible from the TLB
! TLB Reach = (TLB Size) X (Page Size)
! Ideally, the working set of each process is stored in the TLB

! Otherwise there is a high degree of page faults
! Increase the Page Size

! This may lead to an increase in fragmentation as not all
applications require a large page size

! Provide Multiple Page Sizes
! This allows applications that require larger page sizes the

opportunity to use them without an increase in fragmentation

10.74 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Program Structure

! Program structure
! int[128,128] data;

! Each row is stored in one page
! Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

! Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

10.75 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O interlock

" I/O Interlock – Pages must
sometimes be locked into memory

" Consider I/O - Pages that are used
for copying a file from a device
must be locked from being selected
for eviction by a page replacement
algorithm

" Pinning of pages to lock into
memory

10.76 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

! Windows

! Solaris

10.77 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows
! Uses demand paging with clustering. Clustering brings in pages

surrounding the faulting page
! Processes are assigned working set minimum and working set

maximum
! Working set minimum is the minimum number of pages the

process is guaranteed to have in memory
! A process may be assigned as many pages up to its working set

maximum
! When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to
restore the amount of free memory

! Working set trimming removes pages from processes that have
pages in excess of their working set minimum

10.78 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solaris

! Maintains a list of free pages to assign faulting processes
! Lotsfree – threshold parameter (amount of free memory) to

begin paging
! Desfree – threshold parameter to increasing paging
! Minfree – threshold parameter to being swapping
! Paging is performed by pageout process
! Pageout scans pages using modified clock algorithm
! Scanrate is the rate at which pages are scanned. This ranges

from slowscan to fastscan
! Pageout is called more frequently depending upon the amount of

free memory available
! Priority paging gives priority to process code pages

10.79 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solaris 2 Page Scanner

minfree

sc
a
n
 r

a
te

100
slowscan

8192
fastscan

desfree
amount of free memory

lotsfree

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 10

10.81 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Performance of Demand Paging
! Stages in Demand Paging (worse case)
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the

interrupted instruction

10.82 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Need For Page Replacement

10.83 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Priority Allocation

! Use a proportional allocation scheme using priorities rather
than size

! If process Pi generates a page fault,
! select for replacement one of its frames
! select for replacement a frame from a process with lower

priority number

10.84 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Compression

! Memory compression -- rather than paging out modified frames to
swap space, we compress several frames into a single frame, enabling
the system to reduce memory usage without resorting to swapping
pages.

! Consider the following free-frame-list consisting of 6 frames

! Assume that this number of free frames falls below a certain threshold
that triggers page replacement. The replacement algorithm (say, an LRU
approximation algorithm) selects four frames -- 15, 3, 35, and 26 to place
on the free-frame list. It first places these frames on a modified-frame list.
Typically, the modified-frame list would next be written to swap space,
making the frames available to the free-frame list. An alternative strategy
is to compress a number of frames{\mdash}say, three{\mdash}and store
their compressed versions n a single page frame.

10.85 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Compression (Cont.)

! An alternative to paging is memory compression.
! Rather than paging out modified frames to swap space, we compress

several frames into a single frame, enabling the system to reduce
memory usage without resorting to swapping pages.

