@

CG and AHF: Introduction to Operating Systems

File 1/0

CS 3113 Spring 2019

Be sure to install all code prerequisites

update

-y dist-upgrade

install
install
install
install
install
install
install
install

vim emacs htop tmux tree time curl

gcc gcc—doc gdb make ranger tree
valgrind strace glances
linux-tools-common linux-tools—generic
linux-tools- uname -r°

libcap-dev

libacll-dev build-essential libffi-dev
bats zliblg-dev zliblg-dbg

CG and AHF: Introduction to Operating Systems

Download TLPI book code

cd /projects

wget http://man7.org/tlpi/code/download/tlpi-190116-dist.tar.gz
tar xvzf tlpi-190116-dist.tar.gz

cd tlpi-dist/

WELG

CG and AHF: Introduction to Operating Systems

File Descriptors

| A nonnegative integer that may refer to:
regular files, pipes, FIFOs, sockets, terminals or devices.

| Each process has its own assigned set of file descriptors.

| Used by the system to refer to files (not filenames)

| When requested, the lowest-numbered unused file descriptor is
assigned

Standard File Descriptors

When a shell program is run, these
descriptors are copied from the
terminal to the running program.

/0 redirection may modify this
assignment.

IDEs may map output to stderr to a
red color

POSIX names are available in
<unistd.h>

CG and AHF: Introduction to Operating Systems

File descriptor | Purpose POSIX name | stdio stream
0 standard input | STDIN_FILENO | stdin
1 standard output | STDOUT_FILENO | stdout
2 standard error | STDERR_FILENO | stderr
stderr is mapped to
error.txt
. /myprog 2>error.txt

\

/

|

New process/program

to be run

Key 1/O System Calls

fd = open(pathname, flags, mode) | Opens the file identified by pathname,
returning a file descriptor.

numread = read(fd, buffer, count) | Y€Ads at most count bytes from the open

file referred to by fd and stores them in
buffer.

numwritten = write(fd, buffer, count) | Writes up to count bytes from buffer to the
open file referred to by fd.

status = close(fd) | is called after all I/O has been completed,
in order to release the file descriptor fd
and its associated kernel resources.

Listing 4-1: Using 1/O system calls

fileio/copy.c
#include <sys/stat.h>

#include <fcntl.h>

#include "tlpi_hdr.h"

#ifndef BUF_SIZE /* Allow "cc -D" to override definition */
#define BUF_SIZE 1024
#endif

int
main(int argc, char *argv[])

int inputFd, outputFd, openFlags;
mode_t filePerms;

ssize_t numRead;

char buf[BUF_SIZE];

if (argc != 3 || stremp(argv[1], "--help") == 0)
usageErr("%s old-file new-file\n", argv[0]);

Example:

/* Open input and output files */

[] []
inputFd = open(argv[1], O_RDONLY);
if (inputFd == -1)
A errkExit("opening file %s", argv[1]);

openFlags = O_CREAT | O_WRONLY | O TRUNC;
filePerms = S_IRUSR | S_IWUSR | S IRGRP | S_IWGRP |
S_IROTH | S_IWOTH; /% Tw-Tw-Tw- */
outputFd = open(argv[2], openFlags, filePerms);
if (outputFd == -1)
errkExit("opening file %s", argv[2]);

/* Transfer data until we encounter end of input or an error */

while ((numRead = read(inputFd, buf, BUF_SIZE)) > 0)
if (write(outputFd, buf, numRead) != numRead)
fatal("couldn't write whole buffer");

if (numRead == -1)
errkxit("read");

if (close(inputFd) == -1)
errkxit("close input");

if (close(outputFd) == -1)
errkxit("close output");

exit(EXIT_SUCCESS);

fileio/copy.c

CG and AHF: Introduction to Operating Systems

same four system calls—open(), read(),
write(), and close()—are used to perform
1/0 on all types of files.

$./copy test test.old Copy a regular file

$./copy a.txt /dev/tty Copy a regular file to this terminal

$./copy /dev/tty b.txt Copy input from this terminal to a regular file
$./copy /dev/pts/16 /dev/tty Copy input from another terminal

CG and AHF: Introduction to Operating Systems 8

Open

opens the file identified by pathname, returning a file descriptor.

CG and AHF: Introduction to Operating Systems

#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, ... /* mode_t mode */);

Returns file descriptor on success, or -1 on error

Listing 4-2: Examples of the use of open()

/* Open existing file for reading */

fd = open("startup", O _RDONLY);
if (fd == -1)
errExit("open");

/* Open new or existing file for reading and writing, truncating to zero
bytes; file permissions read+write for owner, nothing for all others */

fd = open("myfile", O RDWR | O CREAT | O TRUNC, S IRUSR | S IWUSR);
if (fd == -1)
errExit("open");

/* Open new or existing file for writing; writes should always
append to end of file */

fd = open("w.log", O WRONLY | O CREAT | O _TRUNC | O_APPEND,
S_IRUSR | S_IWUSR);
if (fd == -1)
errExit("open");

Flag Purpose SUS?
0_RDONLY Open for reading only v3
0_WRONLY Open for writing only v3
0_RDWR Open for reading and writing v3
0_CLOEXEC Set the close-on-exec flag (since Linux 2.6.23) v4
0_CREAT Create file if it doesn’t already exist v3
0_DIRECT File I/O bypasses buffer cache

0_DIRECTORY | Fail if pathname is not a directory v4
0_EXCL With 0_CREAT: create file exclusively v3
0_LARGEFILE | Used on 32-bit systems to open large files

0_NOATIME Don’t update file last access time on read() (since Linux 2.6.8)
0_NOCTTY Don’t let pathname become the controlling terminal v3
0_NOFOLLOW | Don’t dereference symbolic links v4
0_TRUNC Truncate existing file to zero length v3
0_APPEND Writes are always appended to end of file v3
0_ASYNC Generate a signal when I/0 is possible

0_DSYNC Provide synchronized I/0O data integrity (since Linux 2.6.33) v3
0_NONBLOCK | Open in nonblocking mode v3
0_SYNC Make file writes synchronous v3

CG and AHF: Introduction to Operating Systems 10

Read

reads at most count bytes from the open file referred to by fd and stores them in
buffer.

CG and AHF: Introduction to Operating Systems

11

#include <unistd.h>

ssize_t read(int fd, void *buffer, size_t count);

Returns number of bytes read, 0 on EOF, or -1 on error

char buffer[MAX READ + 1];
ssize t numRead;

numRead = read(STDIN FILENO, buffer, MAX READ);
if (numRead == -1)
errkExit("read");

#define MAX READ 20
char buffer[MAX READ];

buffer[numRead] = '\0';
printf("The input data was: %s\n", buffer);

if (read(STDIN FILENO, buffer, MAX READ) == -1)
errExit("read");
printf("The input data was: %s\n", buffer);

CG and AHF: Introduction to Operating Systems 12

Write

writes up to count bytes from buffer to the open file referred to by fd.

CG and AHF: Introduction to Operating Systems

13

#include <unistd.h>

ssize_t write(int fd, void *buffer, size_t count);

Returns number of bytes written, or =1 on error

CG and AHF: Introduction to Operating Systems

Close

is called after all I/O has been completed, in order to release the file descriptor fd
and its associated kernel resources.

CG and AHF: Introduction to Operating Systems

15

#include <unistd.h>

int close(int fd);

Returns 0 on success, or =1 on error

if (close(fd) == -1)

AT wy . Al heck f :
errExit("close"); ways check for errors

CG and AHF: Introduction to Operating Systems

Seeking

File offset

| Also called read- write offset or pointer
| the kernel records a file offset for each open file.
| The first byte of the file is at offset O.

| The file offset is set to point to the start of the file when the file is

opened and is automatically adjusted by each subsequent call to
read() or write()

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

Returns new file offset if successful, or =1 on error

File containing Unwritten bytes

.

N bytes of data past EOF
te SIS ST
ble o T11 IN-2[N-1] NN+
number b—m——toniaAo— -
Current
[ile offset
B -
| SEEK_SET SEEK_CUR SEEK_END

| whence value

Figure 4-1: Interpreting the whence argument of Iseek()

1seek(fd, @, SEEK_CUR); /* Returns current cursor loc of without change */
lseek(fd, @, SEEK_SET); /* Start of file */

1lseek(fd, @, SEEK_END); /* Next byte after the end of the file */
lseek(fd, -1, SEEK_END); /* Last byte of file */

lseek(fd, -10, SEEK_CUR); /* Ten bytes prior to current location */
lseek(fd, 10000, SEEK_END); /* 10001 bytes past last byte of file */

CG and AHF: Introduction to Operating Systems 19

argvlap][0] == 'r
printf("%c", isprint((unsigned char) buf[j]) ?
buf[§] : '2");
else
printf("%02x ", (unsigned int) buf[j]);

}
_aanon of read(), write(), .. prineEC;

free(buf);
-ude <sys/stat.h> break;
nclude <fentl.h> cue'w:./*Nﬁigsumgatcmwmtoﬁwt*/
nclude <Ctype.h> 'l‘:m"(‘zt;;i:t;e:rieqt)ﬂ &argv[ap][1], strlen(&argv[ap][1]));

" . " errExit("write");
nclude tlpl_hdr’h “f("%s: wrote %1d bytes\n", argv[ap], (long) numWri*

t T~ affset */
in(int argc, char *argv[])

size t len;

off t offset;

int fd, ap, j;

char *buf;

ssize t numRead, numWritten;

if (argc < 3 || strcmp(argv[1], "--help") == 0)

usageErr("%s file {r<length>|R<length> |w<string>|s<offset>}...' Exa | I l p | e)
]

argv[0]);

fd = open(argﬁ;l]J;ROTRl;ﬁI;wlIJSg_TREgéGRP | S TR | fl ‘ e I O/S e e k_l O . C

S_IROTH | S_IWOTH); /* TW-TW-TW
if (fd == -1)
errExit("open");

for (ap = 2; ap < argc; ap++) {
switch (argv[ap][o]) {
case 'r': /* Display bytes at current offset.
case 'R': /* Display bytes at current offe
len = getlLong(&argv[ap][1], GN_ANY P°

CG and AHF: Introduction to Operating Systems

[seek + read + write

$ touch tfile Create new, empty file

$./seek_io tfile s100000 wabc Seek to offset 100,000, write “abc”
$100000: seek succeeded

wabc: wrote 3 bytes

du tfile # The number of blocks used

$ 1s -1 tfile Check size of file

-YW-Y--Y-- 1 mtk users 100003 Feb 10 10:35 tfile

$./seek_io tfile 510000 R5 Seek to offset 10,000, read 5 bytes from hole
$10000: seek succeeded

R5: 00 00 00 00 00 Bytes in the hole contain 0

./seek_io tfile s10000 wefg # write efg starting at byte point 10000

du tfile # The number of blocks used

CG and AHF: Introduction to Operating Systems

21

