Compiling Code Bases

Generating an Executable File

C File (.c) \
Compiler: translate from

Object File (.0) human readable to

. . machine-specific code
* Intermediate machine-

specific representation of
just what is in a C file Linker: bring together
= multiple object files so that

Executable (no extension)/ all functions are known

Source Code (.c, .cpp, .h)l

Preprocessing Step 1: Preprocessor (cpp)

Include Header, Expand Macro (.1, .ii)l
Compilation Step 2: Compiler (gcc, g++)
Assembly Code (.s)l

Assemble Step 3: Assembler (as)
Machine Code (.o, .obj)i
Static Library (.1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code (.exe)l

CG: Introduction to Operating Systems: Make Files

Gnu C Compiler (gcc)

* Performs the compiling and linking phases for us

* Also invokes the assembler as part of the compiling
process

Compiling Code Bases

As the set of files in a program gets large, we want to:
* Have a way to invoke the compiler easily
* Only compile the code that needs to be compiled

« Have a way to track which files depend on which other
files

Invoking gcc at the compiler gets tiring and error prone...

Make Files

One of several ways to manage the compiling/project
management process

* Define dependencies: what files depend on other files?

* Define rules for how to create derived files
* Including the invocation of the compiler

» Uses file time stamps to know what work actually needs
to be done

Our First Program

#include <stdio.h>

int main(int argc, char** argv)

{
printf ("Hello, World\n");

gce hello.c -o hello

Our First Makefile

The top rule 1is executed by default
all: hello

Other rules are invoked as necessary
Rule for creating the hello executable

hello: hello.c
gcc hello.c -o hello

Automatic Variables

Automatic variables are set by make after a rule is matched. There include:

$@: the target filename.

$*: the target filename without the file extension.

$<: the first prerequisite filename.

$7: the filenames of all the prerequisites, separated by spaces, discard duplicates.
$+: similar to $”, but includes duplicates.

$?: the names of all prerequisites that are newer than the target, separated by

spaces.

For example, we can rewrite the earlier makefile as:

all: hello.exe

$@ matches the target; $< matches the first dependent
hello.exe: hello.o

gce -0 3@ %<

hello.o: hello.c

gee -c $<

clean:

rm hello.o hello.exe

CG: Introduction to Operating Systems: Make Files

