
Compiling Code Bases

Generating an Executable File

C File (.c)

Object File (.o)
• Intermediate machine-

specific representation of
just what is in a C file

Executable (no extension)
CG: Introduction to Operating Systems: Make Files

Compiler: translate from
human readable to
machine-specific code

Linker: bring together
multiple object files so that
all functions are known

CG: Introduction to Operating Systems: Make Files

Gnu C Compiler (gcc)

• Performs the compiling and linking phases for us
• Also invokes the assembler as part of the compiling

process

CG: Introduction to Operating Systems: Make Files

Compiling Code Bases

As the set of files in a program gets large, we want to:
• Have a way to invoke the compiler easily
• Only compile the code that needs to be compiled
• Have a way to track which files depend on which other

files

Invoking gcc at the compiler gets tiring and error prone…

CG: Introduction to Operating Systems: Make Files

Make Files

One of several ways to manage the compiling/project
management process
• Define dependencies: what files depend on other files?
• Define rules for how to create derived files

• Including the invocation of the compiler
• Uses file time stamps to know what work actually needs

to be done

CG: Introduction to Operating Systems: Make Files

Our First Program

#include <stdio.h>

int main(int argc, char** argv)
{

printf("Hello, World\n");
}

gcc hello.c –o hello
CG: Introduction to Operating Systems: Make Files

Our First Makefile

The top rule is executed by default
all: hello

Other rules are invoked as necessary

Rule for creating the hello executable
hello: hello.c

gcc hello.c -o hello
CG: Introduction to Operating Systems: Make Files

CG: Introduction to Operating Systems: Make Files

