
Distributed Systems
(3rd Edition)

Chapter 02: Architectures

Version: February 25, 2017

Architectures: Architectural styles

Architectural styles

Basic idea
A style is formulated in terms of

(replaceable) components with well-defined interfaces
the way that components are connected to each other
the data exchanged between components
how these components and connectors are jointly configured into a
system.

Connector
A mechanism that mediates communication, coordination, or cooperation
among components. Example: facilities for (remote) procedure call,
messaging, or streaming.

2 / 36

Architectures: Architectural styles Layered architectures

Layered architecture

Different layered organizations

Layer N

Layer N-1

Layer 1

Layer 2

Request/Response
downcall

Layer N

Layer N-1

Layer N-3

Layer N-2

One-way call

Upcall
Handle

Layer N

Layer N-1

Layer N-2

(a) (b) (c)

3 / 36

Architectures: Architectural styles Layered architectures

Example: communication protocols

Protocol, service, interface

Interface Service

Protocol

Party A Party B

Layer N Layer N

Layer N-1 Layer N-1

Layered communication protocols 4 / 36

Architectures: Architectural styles Layered architectures

Two-party communication

Server

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 (conn, addr) = s.accept() # returns new socket and addr. client
4 while True: # forever
5 data = conn.recv(1024) # receive data from client
6 if not data: break # stop if client stopped
7 conn.send(str(data)+"*") # return sent data plus an "*"
8 conn.close() # close the connection

Client

1 from socket import *
2 s = socket(AF_INET, SOCK_STREAM)
3 s.connect((HOST, PORT)) # connect to server (block until accepted)
4 s.send(’Hello, world’) # send some data
5 data = s.recv(1024) # receive the response
6 print data # print the result
7 s.close() # close the connection

Layered communication protocols 5 / 36

Architectures: Architectural styles Layered architectures

Application Layering

Traditional three-layered view

Application-interface layer contains units for interfacing to users or
external applications
Processing layer contains the functions of an application, i.e., without
specific data
Data layer contains the data that a client wants to manipulate through the
application components

Observation
This layering is found in many distributed information systems, using traditional
database technology and accompanying applications.

Application layering 6 / 36

Architectures: Architectural styles Layered architectures

Application Layering

Traditional three-layered view

Application-interface layer contains units for interfacing to users or
external applications
Processing layer contains the functions of an application, i.e., without
specific data
Data layer contains the data that a client wants to manipulate through the
application components

Observation
This layering is found in many distributed information systems, using traditional
database technology and accompanying applications.

Application layering 6 / 36

Architectures: Architectural styles Layered architectures

Application Layering

Example: a simple search engine

Database
with Web pages

Query
generator

Ranking

algorithm

HTML
generator

User interface

Keyword expression

Database queries

Web page titles
with meta-information

Ranked list
of page titles

HTML page
containing list

Processing
level

User-interface
level

Data level

Application layering 7 / 36

Architectures: Architectural styles Object-based and service-oriented architectures

Object-based style

Essence
Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a
network.

Object

Object

Object

Object

Object

Method call

State

Method

Interface

Encapsulation

Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

8 / 36

Architectures: Architectural styles Resource-based architectures

RESTful architectures

Essence
View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by
(remote) applications.

1 Resources are identified through a single naming scheme
2 All services offer the same interface
3 Messages sent to or from a service are fully self-described
4 After executing an operation at a service, that component forgets

everything about the caller

Basic operations

Operation Description

PUT Create a new resource
GET Retrieve the state of a resource in some representation
DELETE Delete a resource
POST Modify a resource by transferring a new state

9 / 36

Architectures: Architectural styles Resource-based architectures

Example: Amazon’s Simple Storage Service

Essence
Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be
placed into buckets. Operations on ObjectName in bucket BucketName require
the following identifier:

http://BucketName.s3.amazonaws.com/ObjectName

Typical operations

All operations are carried out by sending HTTP requests:

Create a bucket/object: PUT, along with the URI
Listing objects: GET on a bucket name
Reading an object: GET on a full URI

10 / 36

Architectures: Architectural styles Resource-based architectures

On interfaces

Issue
Many people like RESTful approaches because the interface to a service is so
simple. The catch is that much needs to be done in the parameter space.

Amazon S3 SOAP interface

Bucket operations Object operations

ListAllMyBuckets PutObjectInline

CreateBucket PutObject

DeleteBucket CopyObject

ListBucket GetObject

GetBucketAccessControlPolicy GetObjectExtended

SetBucketAccessControlPolicy DeleteObject

GetBucketLoggingStatus GetObjectAccessControlPolicy

SetBucketLoggingStatus SetObjectAccessControlPolicy

11 / 36

Architectures: Architectural styles Resource-based architectures

On interfaces

Simplifications

Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP

import bucket
bucket.create("mybucket")

RESTful

PUT "http://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

12 / 36

Architectures: Architectural styles Resource-based architectures

On interfaces

Simplifications

Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP

import bucket
bucket.create("mybucket")

RESTful

PUT "http://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

12 / 36

Architectures: Architectural styles Resource-based architectures

On interfaces

Simplifications

Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP

import bucket
bucket.create("mybucket")

RESTful

PUT "http://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

12 / 36

Architectures: Architectural styles Resource-based architectures

On interfaces

Simplifications

Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP

import bucket
bucket.create("mybucket")

RESTful

PUT "http://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

12 / 36

Architectures: Architectural styles Publish-subscribe architectures

Coordination

Temporal and referential coupling

Temporally Temporally
coupled decoupled

Referentially Direct Mailbox
coupled

Referentially Event- Shared
decoupled based data space

Event-based and Shared data space

Subscribe

Component Component

Component

Event bus

Publish

Notification
delivery Subscribe Data

delivery
Publish

Component Component

Shared (persistent) data space

13 / 36

Architectures: Architectural styles Publish-subscribe architectures

Example: Linda tuple space

Three simple operations

in(t): remove a tuple matching template t
rd(t): obtain copy of a tuple matching template t
out(t): add tuple t to the tuple space

More details
Calling out(t) twice in a row, leads to storing two copies of tuple t⇒ a
tuple space is modeled as a multiset.
Both in and rd are blocking operations: the caller will be blocked until a
matching tuple is found, or has become available.

14 / 36

Architectures: Architectural styles Publish-subscribe architectures

Example: Linda tuple space

Bob

1 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
2

3 blog._out(("bob","distsys","I am studying chap 2"))
4 blog._out(("bob","distsys","The linda example’s pretty simple"))
5 blog._out(("bob","gtcn","Cool book!"))

Alice

1 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
2

3 blog._out(("alice","gtcn","This graph theory stuff is not easy"))
4 blog._out(("alice","distsys","I like systems more than graphs"))

Chuck

1 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
2

3 t1 = blog._rd(("bob","distsys",str))
4 t2 = blog._rd(("alice","gtcn",str))
5 t3 = blog._rd(("bob","gtcn",str))

15 / 36

Architectures: Middleware organization Wrappers

Using legacy to build middleware

Problem
The interfaces offered by a legacy component are most likely not suitable for all
applications.

Solution
A wrapper or adapter offers an interface acceptable to a client application. Its
functions are transformed into those available at the component.

16 / 36

Architectures: Middleware organization Wrappers

Organizing wrappers

Two solutions: 1-on-1 or through a broker

Application

Wrapper

Broker

Complexity with N applications

1-on-1: requires N× (N−1) = O(N2) wrappers

broker: requires 2N = O(N) wrappers

17 / 36

Architectures: Middleware organization Interceptors

Developing adaptable middleware

Problem
Middleware contains solutions that are good for most applications⇒ you may
want to adapt its behavior for specific applications.

18 / 36

Architectures: Middleware organization Interceptors

Intercept the usual flow of control

Client application

Request-level interceptor

Message-level interceptor

Object middleware

Local OS

Application stub

To object B

Nonintercepted call

Intercepted call
B.doit(val)

invoke(B, &doit, val)

send(B, “doit”, val)

19 / 36

Architectures: System architecture Centralized organizations

Centralized system architectures

Basic Client–Server Model
Characteristics:

There are processes offering services (servers)
There are processes that use services (clients)
Clients and servers can be on different machines
Clients follow request/reply model with respect to using services

Server

Provide service

Client

Request

Reply

Wait

Simple client-server architecture 20 / 36

Architectures: System architecture Centralized organizations

Multi-tiered centralized system architectures

Some traditional organizations

Single-tiered: dumb terminal/mainframe configuration
Two-tiered: client/single server configuration
Three-tiered: each layer on separate machine

Traditional two-tiered configurations

User interface User interface User interface

Application

User interface

Application

User interface

Application

Database

ApplicationApplication Application

Database Database Database Database Database

User interface

Client machine

Server machine

(a) (b) (c) (d) (e)

Multitiered Architectures 21 / 36

Architectures: System architecture Centralized organizations

Being client and server at the same time

Three-tiered architecture
Client Application

server
Database

server
Request
operation

Request
data

Return
data

Return
reply

Wait for
reply

Wait for
data

Multitiered Architectures 22 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Alternative organizations

Vertical distribution
Comes from dividing distributed applications into three logical layers, and
running the components from each layer on a different server (machine).

Horizontal distribution
A client or server may be physically split up into logically equivalent parts, but
each part is operating on its own share of the complete data set.

Peer-to-peer architectures

Processes are all equal: the functions that need to be carried out are
represented by every process⇒ each process will act as a client and a server
at the same time (i.e., acting as a servant).

23 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Structured P2P

Essence
Make use of a semantic-free index: each data item is uniquely associated with
a key, in turn used as an index. Common practice: use a hash function

key(data item) = hash(data item’s value).

P2P system now responsible for storing (key,value) pairs.

Simple example: hypercube

0000

1000

0100

1100

0001 1001

0101 1101

0010

1010

0110

1110

0011 1011

0111 1111

Looking up d with key k ∈ {0,1,2, . . . ,24−1} means routing request to node
with identifier k .

Structured peer-to-peer systems 24 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Example: Chord

Principle

Nodes are logically organized in a ring. Each node has an m-bit identifier.
Each data item is hashed to an m-bit key.
Data item with key k is stored at node with smallest identifier id ≥ k ,
called the successor of key k .
The ring is extended with various shortcut links to other nodes.

Structured peer-to-peer systems 25 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Example: Chord

Shortcut

Node responsible for
keys {5,6,7,8,9}

Nonexisting
node

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29

30
31

Actual node

lookup(3)@9 : 28→ 1→ 4

Structured peer-to-peer systems 26 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Unstructured P2P

Essence
Each node maintains an ad hoc list of neighbors. The resulting overlay
resembles a random graph: an edge 〈u,v〉 exists only with a certain probability
P[〈u,v〉].

Searching

Flooding: issuing node u passes request for d to all neighbors. Request
is ignored when receiving node had seen it before. Otherwise, v searches
locally for d (recursively). May be limited by a Time-To-Live: a maximum
number of hops.

Random walk: issuing node u passes request for d to randomly chosen
neighbor, v . If v does not have d , it forwards request to one of its
randomly chosen neighbors, and so on.

Unstructured peer-to-peer systems 27 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Flooding versus random walk

Model
Assume N nodes and that each data item is replicated across r randomly
chosen nodes.

Random walk

P[k] probability that item is found after k attempts:

P[k] =
r
N
(1− r

N
)k−1.

S (“search size”) is expected number of nodes that need to be probed:

S =
N

∑
k=1

k ·P[k] =
N

∑
k=1

k · r
N
(1− r

N
)k−1 ≈ N/r for 1� r ≤ N.

Unstructured peer-to-peer systems 28 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Flooding versus random walk

Flooding

Flood to d randomly chosen neighbors
After k steps, some R(k) = d · (d −1)k−1 will have been reached
(assuming k is small).
With fraction r/N nodes having data, if r

N ·R(k)≥ 1, we will have found
the data item.

Comparison

If r/N = 0.001, then S ≈ 1000

With flooding and d = 10,k = 4, we contact 7290 nodes.

Random walks are more communication efficient, but might take longer
before they find the result.

Unstructured peer-to-peer systems 29 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Super-peer networks

Essence
It is sometimes sensible to break the symmetry in pure peer-to-peer networks:

When searching in unstructured P2P systems, having index servers
improves performance
Deciding where to store data can often be done more efficiently through
brokers.

Weak peer

Super peer

Overlay network of super peers

Hierarchically organized peer-to-peer networks 30 / 36

Architectures: System architecture Decentralized organizations: peer-to-peer systems

Skype’s principle operation: A wants to contact B

Both A and B are on the public Internet

A TCP connection is set up between A and B for control packets.
The actual call takes place using UDP packets between negotiated ports.

A operates behind a firewall, while B is on the public Internet

A sets up a TCP connection (for control packets) to a super peer S
S sets up a TCP connection (for relaying control packets) to B
The actual call takes place through UDP and directly between A and B

Both A and B operate behind a firewall

A connects to an online super peer S through TCP
S sets up TCP connection to B.
For the actual call, another super peer is contacted to act as a relay R: A
sets up a connection to R, and so will B.
All voice traffic is forwarded over the two TCP connections, and through R.

Hierarchically organized peer-to-peer networks 31 / 36

Architectures: System architecture Hybrid Architectures

Edge-server architecture

Essence
Systems deployed on the Internet where servers are placed at the edge of the
network: the boundary between enterprise networks and the actual Internet.

Edge server

Core Internet

Enterprise network

ISP
ISP

Client Content provider

Edge-server systems 32 / 36

Architectures: System architecture Hybrid Architectures

Collaboration: The BitTorrent case

Principle: search for a file F

Lookup file at a global directory⇒ returns a torrent file
Torrent file contains reference to tracker: a server keeping an accurate
account of active nodes that have (chunks of) F .
P can join swarm, get a chunk for free, and then trade a copy of that
chunk for another one with a peer Q also in the swarm.

Node 1

Node 2

Node N

torrent file
for file F

A BitTorrent
Web page or

search engine

List of nodes
with (chunks of)

file F

Web server File server Tracker

Client node

K out of N nodes

Lookup(F)

Collaborative distributed systems 33 / 36

Architectures: System architecture Hybrid Architectures

BitTorrent under the hood

Some essential details
A tracker for file F returns the set of its downloading processes: the
current swarm.
A communicates only with a subset of the swarm: the neighbor set NA.
if B ∈ NA then also A ∈ NB.
Neighbor sets are regularly updated by the tracker

Exchange blocks

A file is divided into equally sized pieces (typically each being 256 KB)
Peers exchange blocks of pieces, typically some 16 KB.
A can upload a block d of piece D, only if it has piece D.
Neighbor B belongs to the potential set PA of A, if B has a block that A
needs.
If B ∈ PA and A ∈ PB : A and B are in a position that they can trade a block.

Collaborative distributed systems 34 / 36

Architectures: System architecture Hybrid Architectures

BitTorrent phases

Bootstrap phase

A has just received its first piece (through optimistic unchoking: a node from NA
unselfishly provides the blocks of a piece to get a newly arrived node started).

Trading phase

|PA|> 0: there is (in principle) always a peer with whom A can trade.

Last download phase

|PA|= 0: A is dependent on newly arriving peers in NA in order to get the last
missing pieces. NA can change only through the tracker.

Collaborative distributed systems 35 / 36

Architectures: System architecture Hybrid Architectures

BitTorrent phases

Development of |P| relative to |N|.

|N| = 5
|N| = 10
|N| = 40

|P|

|N|

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Fraction pieces downloaded

Collaborative distributed systems 36 / 36

	Architectures
	Architectural styles
	Layered architectures
	Object-based and service-oriented architectures
	Resource-based architectures
	Publish-subscribe architectures

	Middleware organization
	Wrappers
	Interceptors
	Modifiable middleware

	System architecture
	Centralized organizations
	Decentralized organizations: peer-to-peer systems
	Hybrid Architectures

