
Distributed Systems
(3rd Edition)

Chapter 06: Coordination

Version: February 25, 2017

Coordination: Clock synchronization Physical clocks

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)

Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50 cesium
clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about ±0.5 ms.

2 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Clock synchronization

Precision
The goal is to keep the deviation between two clocks on any two machines
within a specified bound, known as the precision π:

∀t ,∀p,q : |Cp(t)−Cq(t)| ≤ π

with Cp(t) the computed clock time of machine p at UTC time t .

Accuracy

In the case of accuracy, we aim to keep the clock bound to a value α:

∀t ,∀p : |Cp(t)− t | ≤ α

Synchronization

Internal synchronization: keep clocks precise
External synchronization: keep clocks accurate

3 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Clock drift
Clock specifications

A clock comes specified with its maximum clock drift rate ρ.
F (t) denotes oscillator frequency of the hardware clock at time t
F is the clock’s ideal (constant) frequency⇒ living up to specifications:

∀t : (1−ρ)≤ F (t)
F
≤ (1 + ρ)

Observation
By using hardware interrupts we couple
a software clock to the hardware clock,
and thus also its clock drift rate:

Cp(t) =
1
F

∫ t

0
F (t)dt ⇒

dCp(t)
dt

=
F (t)

F

⇒∀t : 1−ρ ≤
dCp(t)

dt
≤ 1 + ρ

Fast, perfect, slow clocks

F
as

t c
lo

ck

P
er

fe
ct
 c
lo
ck

Slow
clock

Clock time, C

UTC, t

dC (t)p

dt
= 1

dC (t)p

dt
> 1

dC (t)p

dt
< 1

4 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Detecting and adjusting incorrect times
Getting the current time from a time server

A

B

T1

T2 T3

T4

dTreq dTres

Computing the relative offset θ and delay δ

Assumption: δTreq = T2−T1 ≈ T4−T3 = δTres

θ = T3 +
(
(T2−T1) + (T4−T3)

)
/2−T4 =

(
(T2−T1) + (T3−T4)

)
/2

δ =
(
(T4−T1)− (T3−T2)

)
/2

Network Time Protocol

Collect eight (θ ,δ) pairs and choose θ for which associated delay δ was
minimal.

Network Time Protocol 5 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Detecting and adjusting incorrect times
Getting the current time from a time server

A

B

T1

T2 T3

T4

dTreq dTres

Computing the relative offset θ and delay δ

Assumption: δTreq = T2−T1 ≈ T4−T3 = δTres

θ = T3 +
(
(T2−T1) + (T4−T3)

)
/2−T4 =

(
(T2−T1) + (T3−T4)

)
/2

δ =
(
(T4−T1)− (T3−T2)

)
/2

Network Time Protocol

Collect eight (θ ,δ) pairs and choose θ for which associated delay δ was
minimal.

Network Time Protocol 5 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Keeping time without UTC
Principle

Let the time server scan all machines periodically, calculate an average, and
inform each machine how it should adjust its time relative to its present time.

Using a time server
Time daemon

3:00 3:00

3:00

3:00

3:252:50

Network

3:00 0

-10

+25

3:252:50

3:05 +5

+15

-20

3:053:05

Fundamental
You’ll have to take into account that setting the time back is never allowed⇒
smooth adjustments (i.e., run faster or slower).

The Berkeley algorithm 6 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Keeping time without UTC
Principle

Let the time server scan all machines periodically, calculate an average, and
inform each machine how it should adjust its time relative to its present time.

Using a time server
Time daemon

3:00 3:00

3:00

3:00

3:252:50

Network

3:00 0

-10

+25

3:252:50

3:05 +5

+15

-20

3:053:05

Fundamental
You’ll have to take into account that setting the time back is never allowed⇒
smooth adjustments (i.e., run faster or slower).

The Berkeley algorithm 6 / 49

Coordination: Clock synchronization Clock synchronization algorithms

Reference broadcast synchronization

Essence
A node broadcasts a reference message m⇒ each receiving node p
records the time Tp,m that it received m.
Note: Tp,m is read from p’s local clock.

Problem: averaging will not capture
drift⇒ use linear regression

NO: Offset[p,q](t) =
∑

M
k=1(Tp,k−Tq,k)

M
YES: Offset[p,q](t) = αt + β

RBS minimizes critical path

Time spent in NIC
Message preparation

A

B

C

Delivery time

to app.

Critical path RBS

Usual critical path

Clock synchronization in wireless networks 7 / 49

Coordination: Logical clocks Lamport’s logical clocks

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation

If a and b are two events in the same process, and a comes before b,
then a→ b.
If a is the sending of a message, and b is the receipt of that message,
then a→ b
If a→ b and b→ c, then a→ c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

8 / 49

Coordination: Logical clocks Lamport’s logical clocks

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation

If a and b are two events in the same process, and a comes before b,
then a→ b.
If a is the sending of a message, and b is the receipt of that message,
then a→ b
If a→ b and b→ c, then a→ c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

8 / 49

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a→ b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock⇒
maintain a consistent set of logical clocks, one per process.

9 / 49

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a→ b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock⇒
maintain a consistent set of logical clocks, one per process.

9 / 49

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a→ b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock⇒
maintain a consistent set of logical clocks, one per process.

9 / 49

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: solution

Each process Pi maintains a local counter Ci and adjusts this counter
1 For each new event that takes place within Pi , Ci is incremented by 1.
2 Each time a message m is sent by process Pi , the message receives a

timestamp ts(m) = Ci .
3 Whenever a message m is received by a process Pj , Pj adjusts its local

counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes
Property P1 is satisfied by (1); Property P2 by (2) and (3).
It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

10 / 49

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: example

Consider three processes with event counters operating at different rates

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

m
1

m
2

m
3

m
4

P
1

P
2

P
3

m1

m2

m3

m4

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P adjusts2

its clock

P adjusts1

its clock

P1 P2 P3

70

76

61

69

77

85

11 / 49

Coordination: Logical clocks Lamport’s logical clocks

Logical clocks: where implemented

Adjustments implemented in middleware

Adjust local clock

Message is received

Adjust local clock

and timestamp message

Application sends message

Middleware sends message

Application layer

Middleware layer

Network layer

Message is delivered
to application

12 / 49

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Concurrent updates on a replicated database are seen in the same order
everywhere

P1 adds $100 to an account (initial value: $1000)
P2 increments account by 1%
There are two replicas

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

Result
In absence of proper synchronization:
replica #1← $1111, while replica #2← $1110.

Example: Total-ordered multicasting 13 / 49

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Solution
Process Pi sends timestamped message mi to all others. The message
itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message mi to its application if:

(1) mi is at the head of queuej
(2) for each process Pk , there is a message mk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Example: Total-ordered multicasting 14 / 49

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Solution
Process Pi sends timestamped message mi to all others. The message
itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message mi to its application if:

(1) mi is at the head of queuej
(2) for each process Pk , there is a message mk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Example: Total-ordered multicasting 14 / 49

Coordination: Logical clocks Lamport’s logical clocks

Example: Total-ordered multicast

Solution
Process Pi sends timestamped message mi to all others. The message
itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message mi to its application if:

(1) mi is at the head of queuej
(2) for each process Pk , there is a message mk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Example: Total-ordered multicasting 14 / 49

Coordination: Logical clocks Lamport’s logical clocks

Lamport’s clocks for mutual exclusion

1 class Process:
2 def __init__(self, chan):
3 self.queue = [] # The request queue
4 self.clock = 0 # The current logical clock
5

6 def requestToEnter(self):
7 self.clock = self.clock + 1 # Increment clock value
8 self.queue.append((self.clock, self.procID, ENTER)) # Append request to q
9 self.cleanupQ() # Sort the queue

10 self.chan.sendTo(self.otherProcs, (self.clock,self.procID,ENTER)) # Send request
11

12 def allowToEnter(self, requester):
13 self.clock = self.clock + 1 # Increment clock value
14 self.chan.sendTo([requester], (self.clock,self.procID,ALLOW)) # Permit other
15

16 def release(self):
17 tmp = [r for r in self.queue[1:] if r[2] == ENTER] # Remove all ALLOWs
18 self.queue = tmp # and copy to new queue
19 self.clock = self.clock + 1 # Increment clock value
20 self.chan.sendTo(self.otherProcs, (self.clock,self.procID,RELEASE)) # Release
21

22 def allowedToEnter(self):
23 commProcs = set([req[1] for req in self.queue[1:]]) # See who has sent a message
24 return (self.queue[0][1]==self.procID and len(self.otherProcs)==len(commProcs))

Example: Total-ordered multicasting 15 / 49

Coordination: Logical clocks Lamport’s logical clocks

Lamport’s clocks for mutual exclusion

1 def receive(self):
2 msg = self.chan.recvFrom(self.otherProcs)[1] # Pick up any message
3 self.clock = max(self.clock, msg[0]) # Adjust clock value...
4 self.clock = self.clock + 1 # ...and increment
5 if msg[2] == ENTER:
6 self.queue.append(msg) # Append an ENTER request
7 self.allowToEnter(msg[1]) # and unconditionally allow
8 elif msg[2] == ALLOW:
9 self.queue.append(msg) # Append an ALLOW

10 elif msg[2] == RELEASE:
11 del(self.queue[0]) # Just remove first message
12 self.cleanupQ() # And sort and cleanup

Example: Total-ordered multicasting 16 / 49

Coordination: Logical clocks Lamport’s logical clocks

Lamport’s clocks for mutual exclusion

Analogy with total-ordered multicast

With total-ordered multicast, all processes build identical queues,
delivering messages in the same order
Mutual exclusion is about agreeing in which order processes are allowed
to enter a critical section

Example: Total-ordered multicasting 17 / 49

Coordination: Logical clocks Vector clocks

Vector clocks

Observation

Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally preceded
b.

Concurrent message transmission
using logical clocks

m
1

m
3

m
2

m
4

m
5

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

70

76

61

69

77

85

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.

18 / 49

Coordination: Logical clocks Vector clocks

Vector clocks

Observation

Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally preceded
b.

Concurrent message transmission
using logical clocks

m
1

m
3

m
2

m
4

m
5

0

6

12

18

24

30

36

42

48

0

8

16

24

32

40

48

0

10

20

30

40

50

60

70

80

90

100

P
1

P
2

P
3

70

76

61

69

77

85

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.

18 / 49

Coordination: Logical clocks Vector clocks

Causal dependency

Definition

We say that b may causally depend on a if ts(a) < ts(b), with:

for all k , ts(a)[k]≤ ts(b)[k] and

there exists at least one index k ′ for which ts(a)[k ′] < ts(b)[k ′]

Precedence vs. dependency

We say that a causally precedes b.

b may causally depend on a, as there may be information from a that is
propagated into b.

19 / 49

Coordination: Logical clocks Vector clocks

Capturing causality

Solution: each Pi maintains a vector VCi

VCi [i] is the local logical clock at process Pi .

If VCi [j] = k then Pi knows that k events have occurred at Pj .

Maintaining vector clocks

1 Before executing an event Pi executes VCi [i]← VCi [i] + 1.

2 When process Pi sends a message m to Pj , it sets m’s (vector)
timestamp ts(m) equal to VCi after having executed step 1.

3 Upon the receipt of a message m, process Pj sets
VCj [k]←max{VCj [k], ts(m)[k]} for each k , after which it executes step 1
and then delivers the message to the application.

20 / 49

Coordination: Logical clocks Vector clocks

Vector clocks: Example

Capturing potential causality when exchanging messages

P1

P2

P3

(0,1,0)

(1,1,0) (2,1,0) (3,1,0) (4,1,0)

(4,2,0)

(4,3,0)

(4,3,2)(2,1,1)

m1 m2 m3

m4

P1

P2

P3

(0,1,0)

(1,1,0) (4,1,0)(3,1,0)(2,1,0)

(2,2,0)

(2,3,0)

(2,3,1) (4,3,2)

m1 m2m3

m4

(a) (b)

Analysis

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

(a) (2,1,0) (4,3,0) Yes No m2 may causally precede m4

(b) (4,1,0) (2,3,0) No No m2 and m4 may conflict

21 / 49

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding
messages have already been delivered.

Adjustment

Pi increments VCi [i] only when sending a message, and Pj “adjusts” VCj when
receiving a message (i.e., effectively does not change VCj [j]).

Pj postpones delivery of m until:

1 ts(m)[i] = VCj [i] + 1
2 ts(m)[k]≤ VCj [k] for all k 6= i

22 / 49

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding
messages have already been delivered.

Adjustment

Pi increments VCi [i] only when sending a message, and Pj “adjusts” VCj when
receiving a message (i.e., effectively does not change VCj [j]).

Pj postpones delivery of m until:

1 ts(m)[i] = VCj [i] + 1
2 ts(m)[k]≤ VCj [k] for all k 6= i

22 / 49

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Enforcing causal communication

P1

P2

P3

(0,0,0) (1,0,0)

(1,1,0)

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)

m

m*

Example

Take VC3 = [0,2,2], ts(m) = [1,3,0] from P1. What information does P3 have,
and what will it do when receiving m (from P1)?

23 / 49

Coordination: Logical clocks Vector clocks

Causally ordered multicasting

Enforcing causal communication

P1

P2

P3

(0,0,0) (1,0,0)

(1,1,0)

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)

m

m*

Example

Take VC3 = [0,2,2], ts(m) = [1,3,0] from P1. What information does P3 have,
and what will it do when receiving m (from P1)?

23 / 49

Coordination: Mutual exclusion Overview

Mutual exclusion

Problem
A number of processes in a distributed system want exclusive access to some
resource.

Basic solutions

Permission-based: A process wanting to enter its critical section, or access a
resource, needs permission from other processes.

Token-based: A token is passed between processes. The one who has the
token may proceed in its critical section, or pass it on when not
interested.

24 / 49

Coordination: Mutual exclusion A centralized algorithm

Permission-based, centralized

Simply use a coordinator

Request OK

Coordinator

Queue is
empty

P0 P1 P2

C

Request

No reply

P0 P1 P2

C
2

Release

OK

P
0

P
1

P
2

C

(a) (b) (c)

(a) Process P1 asks the coordinator for permission to access a shared
resource. Permission is granted.

(b) Process P2 then asks permission to access the same resource. The
coordinator does not reply.

(c) When P1 releases the resource, it tells the coordinator, which then replies
to P2 .

25 / 49

Coordination: Mutual exclusion A distributed algorithm

Mutual exclusion Ricart & Agrawala

The same as Lamport except that acknowledgments are not sent

Return a response to a request only when:

The receiving process has no interest in the shared resource; or
The receiving process is waiting for the resource, but has lower priority
(known through comparison of timestamps).

In all other cases, reply is deferred, implying some more local administration.

26 / 49

Coordination: Mutual exclusion A distributed algorithm

Mutual exclusion Ricart & Agrawala

Example with three processes

0

1 2

8

8

8 12

12

12

0

1 2

OK OK

OK

Accesses

resource

0

1 2

OK

Accesses

resource

(a) (b) (c)

(a) Two processes want to access a shared resource at the same moment.
(b) P0 has the lowest timestamp, so it wins.
(c) When process P0 is done, it sends an OK also, so P2 can now go ahead.

27 / 49

Coordination: Mutual exclusion A token-ring algorithm

Mutual exclusion: Token ring algorithm

Essence
Organize processes in a logical ring, and let a token be passed between them.
The one that holds the token is allowed to enter the critical region (if it wants
to).

An overlay network constructed as a logical ring with a circulating token

0 1 2 3

4567

Token

28 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

Principle

Assume every resource is replicated N times, with each replica having its own
coordinator⇒ access requires a majority vote from m > N/2 coordinators. A
coordinator always responds immediately to a request.

Assumption

When a coordinator crashes, it will recover quickly, but will have forgotten about
permissions it had granted.

29 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

How robust is this system?

Let p = ∆t/T be the probability that a coordinator resets during a time
interval ∆t , while having a lifetime of T .

The probability P[k] that k out of m coordinators reset during the same
interval is

P[k] =

(
m
k

)
pk (1−p)m−k

f coordinators reset⇒ correctness is violated when there is only a
minority of nonfaulty coordinators: when m− f ≤ N/2, or, f ≥m−N/2.

The probability of a violation is ∑
N
k=m−N/2P[k].

30 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

How robust is this system?

Let p = ∆t/T be the probability that a coordinator resets during a time
interval ∆t , while having a lifetime of T .

The probability P[k] that k out of m coordinators reset during the same
interval is

P[k] =

(
m
k

)
pk (1−p)m−k

f coordinators reset⇒ correctness is violated when there is only a
minority of nonfaulty coordinators: when m− f ≤ N/2, or, f ≥m−N/2.

The probability of a violation is ∑
N
k=m−N/2P[k].

30 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

How robust is this system?

Let p = ∆t/T be the probability that a coordinator resets during a time
interval ∆t , while having a lifetime of T .

The probability P[k] that k out of m coordinators reset during the same
interval is

P[k] =

(
m
k

)
pk (1−p)m−k

f coordinators reset⇒ correctness is violated when there is only a
minority of nonfaulty coordinators: when m− f ≤ N/2, or, f ≥m−N/2.

The probability of a violation is ∑
N
k=m−N/2P[k].

30 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

How robust is this system?

Let p = ∆t/T be the probability that a coordinator resets during a time
interval ∆t , while having a lifetime of T .

The probability P[k] that k out of m coordinators reset during the same
interval is

P[k] =

(
m
k

)
pk (1−p)m−k

f coordinators reset⇒ correctness is violated when there is only a
minority of nonfaulty coordinators: when m− f ≤ N/2, or, f ≥m−N/2.

The probability of a violation is ∑
N
k=m−N/2P[k].

30 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

Violation probabilities for various parameter values

N m p Violation
8 5 3 sec/hour < 10−15

8 6 3 sec/hour < 10−18

16 9 3 sec/hour < 10−27

16 12 3 sec/hour < 10−36

32 17 3 sec/hour < 10−52

32 24 3 sec/hour < 10−73

N m p Violation
8 5 30 sec/hour < 10−10

8 6 30 sec/hour < 10−11

16 9 30 sec/hour < 10−18

16 12 30 sec/hour < 10−24

32 17 30 sec/hour < 10−35

32 24 30 sec/hour < 10−49

So....
What can we conclude?

31 / 49

Coordination: Mutual exclusion A decentralized algorithm

Decentralized mutual exclusion

Violation probabilities for various parameter values

N m p Violation
8 5 3 sec/hour < 10−15

8 6 3 sec/hour < 10−18

16 9 3 sec/hour < 10−27

16 12 3 sec/hour < 10−36

32 17 3 sec/hour < 10−52

32 24 3 sec/hour < 10−73

N m p Violation
8 5 30 sec/hour < 10−10

8 6 30 sec/hour < 10−11

16 9 30 sec/hour < 10−18

16 12 30 sec/hour < 10−24

32 17 30 sec/hour < 10−35

32 24 30 sec/hour < 10−49

So....
What can we conclude?

31 / 49

Coordination: Mutual exclusion A decentralized algorithm

Mutual exclusion: comparison

Messages per Delay before entry
Algorithm entry/exit (in message times)

Centralized 3 2
Distributed 2 · (N−1) 2 · (N−1)
Token ring 1, . . . ,∞ 0, . . . ,N−1
Decentralized 2 ·m ·k +m,k = 1,2, . . . 2 ·m ·k

32 / 49

Coordination: Election algorithms

Election algorithms

Principle

An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems the coordinator is chosen by hand (e.g. file servers). This
leads to centralized solutions⇒ single point of failure.

Teasers

1 If a coordinator is chosen dynamically, to what extent can we speak about
a centralized or distributed solution?

2 Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

33 / 49

Coordination: Election algorithms

Election algorithms

Principle

An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems the coordinator is chosen by hand (e.g. file servers). This
leads to centralized solutions⇒ single point of failure.

Teasers

1 If a coordinator is chosen dynamically, to what extent can we speak about
a centralized or distributed solution?

2 Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

33 / 49

Coordination: Election algorithms

Basic assumptions

All processes have unique id’s

All processes know id’s of all processes in the system (but not if they are
up or down)

Election means identifying the process with the highest id that is up

34 / 49

Coordination: Election algorithms The bully algorithm

Election by bullying

Principle

Consider N processes {P0 , . . . ,PN−1} and let id(Pk) = k . When a process Pk
notices that the coordinator is no longer responding to requests, it initiates an
election:

1 Pk sends an ELECTION message to all processes with higher identifiers:
Pk+1,Pk+2 , . . . ,PN−1.

2 If no one responds, Pk wins the election and becomes coordinator.

3 If one of the higher-ups answers, it takes over and Pk ’s job is done.

35 / 49

Coordination: Election algorithms The bully algorithm

Election by bullying

The bully election algorithm

Election

Electio
n

E
le

ctio
n

1

2

4

0

5

6

3

7

OK

OK

1

2

4

0

5

6

3

7

E
le

c
ti
o
n

E
le
ct
io
n

Election

1

2

4

0

5

6

3

7

OK

1

2

4

0

5

6

3

7

Coordinator

1

2

4

0

5

6

3

7

36 / 49

Coordination: Election algorithms A ring algorithm

Election in a ring

Principle

Process priority is obtained by organizing processes into a (logical) ring.
Process with the highest priority should be elected as coordinator.

Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passed on to the next
successor.

If a message is passed on, the sender adds itself to the list. When it gets
back to the initiator, everyone had a chance to make its presence known.

The initiator sends a coordinator message around the ring containing a
list of all living processes. The one with the highest priority is elected as
coordinator.

37 / 49

Coordination: Election algorithms A ring algorithm

Election in a ring

Election algorithm using a ring

1 2 3 4

5670

[3]

[3,4]

[3,4,5]

[3,4,5,6]

[3,4,5,6,0]

[3,4,5,6,0,1] [3,4,5,6,0,1,2]

[6]

[6,0]

[6,0,1] [6,0,1,2] [6,0,1,2,3]

[6,0,1,2,3,4]

[6,0,1,2,3,4,5]

The solid line shows the election messages initiated by P6

The dashed one the messages by P3

38 / 49

Coordination: Election algorithms Elections in wireless environments

A solution for wireless networks

A sample network

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h
i

j

Capacity

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h
i

j

Broadcasting

node

39 / 49

Coordination: Election algorithms Elections in wireless environments

A solution for wireless networks

A sample network

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h

i
j

g receives

broadcast

from b first

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h
i

j

e receives

broadcast

from g first

40 / 49

Coordination: Election algorithms Elections in wireless environments

A solution for wireless networks

A sample network

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h

ij

f receives
broadcast

from e first

4

6

3

1

4

5

8

2

2

4

a

b

c
d

e

f

g

h

ij

[f,4]

[c,3]

[d,2]

[i,5][h,8]

[h,8]

[h,8]

[j,4]

[f,4]

41 / 49

Coordination: Location systems

Positioning nodes

Issue
In large-scale distributed systems in which nodes are dispersed across a
wide-area network, we often need to take some notion of proximity or distance
into account⇒ it starts with determining a (relative) location of a node.

42 / 49

Coordination: Location systems GPS: Global Positioning System

Computing position

Observation
A node P needs d + 1 landmarks to compute its own position in a
d-dimensional space. Consider two-dimensional case.

Computing a position in 2D

P
d3

d2

d1

(x ,y)3 3

(x ,y)2 2

(x ,y)1 1

Solution
P needs to solve three equations in
two unknowns (xP ,yP):

di =
√

(xi −xP)2 + (yi −yP)2

43 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics

∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i (c is speed of light)
Real distance: di = c∆i −c∆r =

√
(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics
∆r : unknown deviation of the receiver’s clock.

xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i (c is speed of light)
Real distance: di = c∆i −c∆r =

√
(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics
∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.

Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i (c is speed of light)
Real distance: di = c∆i −c∆r =

√
(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics
∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i

∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i (c is speed of light)
Real distance: di = c∆i −c∆r =

√
(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics
∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .

Measured distance to satellite i : c×∆i (c is speed of light)
Real distance: di = c∆i −c∆r =

√
(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics
∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i (c is speed of light)

Real distance: di = c∆i −c∆r =
√

(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems GPS: Global Positioning System

Global positioning system

Assuming that the clocks of the satellites are accurate and synchronized

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of sync with the satellite

Basics
∆r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
∆i = (Tnow −Ti) + ∆r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c×∆i (c is speed of light)
Real distance: di = c∆i −c∆r =

√
(xi −xr)2 + (yi −yr)2 + (zi −zr)2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)

44 / 49

Coordination: Location systems When GPS is not an option

WiFi-based location services
Basic idea

Assume we have a database of known access points (APs) with
coordinates
Assume we can estimate distance to an AP
Then: with 3 detected access points, we can compute a position.

War driving: locating access points

Use a WiFi-enabled device along with a GPS receiver, and move through
an area while recording observed access points.
Compute the centroid: assume an access point AP has been detected at
N different locations {~x1, ~x2, . . . , ~xN}, with known GPS location.

Compute location of AP as~xAP =
∑

N
i=1 ~xi
N .

Problems

Limited accuracy of each GPS detection point ~xi
An access point has a nonuniform transmission range
Number of sampled detection points N may be too low.

45 / 49

Coordination: Location systems Logical positioning of nodes

Computing position
Problems

Measured latencies to
landmarks fluctuate

Computed distances will not
even be consistent

Inconsistent distances in 1D space

P

1 2 3 4

Q R

2.8

1.0 2.0

Solution: minimize errors
Use N special landmark nodes L1, . . . ,LN .
Landmarks measure their pairwise latencies d̃(Li ,Lj)
A central node computes the coordinates for each landmark, minimizing:

N

∑
i=1

N

∑
j=i+1

(
d̃(Li ,Lj)− d̂(Li ,Lj)

d̃(Li ,Lj)

)2

where d̂(Li ,Lj) is distance after nodes Li and Lj have been positioned.

Centralized positioning 46 / 49

Coordination: Location systems Logical positioning of nodes

Computing position

Choosing the dimension m

The hidden parameter is the dimension m with N > m. A node P measures its
distance to each of the N landmarks and computes its coordinates by
minimizing

N

∑
i=1

(
d̃(Li ,P)− d̂(Li ,P)

d̃(Li ,P)

)2

Observation
Practice shows that m can be as small as 6 or 7 to achieve latency estimations
within a factor 2 of the actual value.

Centralized positioning 47 / 49

Coordination: Location systems Logical positioning of nodes

Vivaldi

Principle: network of springs exerting forces

Consider a collection of N nodes P1, . . . ,PN , each Pi having coordinates ~xi .
Two nodes exert a mutual force:

~Fij =
(
d̃(Pi ,Pj)− d̂(Pi ,Pj)

)
×u(~xi −~xj)

with u(~xi −~xj) is the unit vector in the direction of ~xi −~xj

Node Pi repeatedly executes steps

1 Measure the latency d̃ij to node Pj , and also receive Pj ’s coordinates ~xj .
2 Compute the error e = d̃(Pi ,Pj)− d̂(Pi ,Pj)
3 Compute the direction ~u = u(~xi −~xj).
4 Compute the force vector Fij = e ·~u
5 Adjust own position by moving along the force vector: ~xi ← ~xi + δ ·~u.

Decentralized positioning 48 / 49

Coordination: Gossip-based coordination A peer-sampling service

Example applications

Typical apps

Data dissemination: Perhaps the most important one. Note that there are
many variants of dissemination.

Aggregation: Let every node Pi maintain a variable vi . When two nodes
gossip, they each reset their variable to

vi ,vj ← (vi + vj)/2

Result: in the end each node will have computed the average v̄ = ∑i vi/N.

What happens in the case that initially vi = 1 and vj = 0, j 6= i?

49 / 49

Coordination: Gossip-based coordination A peer-sampling service

Example applications

Typical apps

Data dissemination: Perhaps the most important one. Note that there are
many variants of dissemination.

Aggregation: Let every node Pi maintain a variable vi . When two nodes
gossip, they each reset their variable to

vi ,vj ← (vi + vj)/2

Result: in the end each node will have computed the average v̄ = ∑i vi/N.

What happens in the case that initially vi = 1 and vj = 0, j 6= i?

49 / 49

	Coordination
	Clock synchronization
	Physical clocks
	Clock synchronization algorithms

	Logical clocks
	Lamport's logical clocks
	Vector clocks

	Mutual exclusion
	Overview
	A centralized algorithm
	A distributed algorithm
	A token-ring algorithm
	A decentralized algorithm

	Election algorithms
	The bully algorithm
	A ring algorithm
	Elections in wireless environments
	Elections in large-scale systems

	Location systems
	GPS: Global Positioning System
	When GPS is not an option
	Logical positioning of nodes

	Distributed event matching
	Centralized implementations

	Gossip-based coordination
	Aggregation
	A peer-sampling service

