
Distributed Systems
(3rd Edition)

Chapter 08: Fault Tolerance

Version: February 25, 2017

Fault tolerance: Introduction to fault tolerance Basic concepts

Dependability

Basics
A component provides services to clients. To provide services, the component
may require the services from other components⇒ a component may depend
on some other component.

Specifically

A component C depends on C∗ if the correctness of C’s behavior depends on
the correctness of C∗’s behavior. (Components are processes or channels.)

Requirements related to dependability

Requirement Description

Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired

2 / 67

Fault tolerance: Introduction to fault tolerance Basic concepts

Dependability

Basics
A component provides services to clients. To provide services, the component
may require the services from other components⇒ a component may depend
on some other component.

Specifically

A component C depends on C∗ if the correctness of C’s behavior depends on
the correctness of C∗’s behavior. (Components are processes or channels.)

Requirements related to dependability

Requirement Description

Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired

2 / 67

Fault tolerance: Introduction to fault tolerance Basic concepts

Reliability versus availability

Reliability R(t) of component C

Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at time T = 0.

Traditional metrics
Mean Time To Failure (MTTF): The average time until a component fails.
Mean Time To Repair (MTTR): The average time needed to repair a
component.
Mean Time Between Failures (MTBF): Simply MTTF + MTTR.

3 / 67

Fault tolerance: Introduction to fault tolerance Basic concepts

Reliability versus availability

Availability A(t) of component C

Average fraction of time that C has been up-and-running in interval [0, t).

Long-term availability A: A(∞)

Note: A = MTTF
MTBF = MTTF

MTTF+MTTR

Observation
Reliability and availability make sense only if we have an accurate notion of
what a failure actually is.

4 / 67

Fault tolerance: Introduction to fault tolerance Basic concepts

Terminology

Failure, error, fault

Term Description Example

Failure A component is not living up to
its specifications

Crashed program

Error Part of a component that can
lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer

5 / 67

Fault tolerance: Introduction to fault tolerance Basic concepts

Terminology

Handling faults

Term Description Example

Fault
prevention

Prevent the occurrence
of a fault

Don’t hire sloppy
programmers

Fault tolerance Build a component
such that it can mask
the occurrence of a
fault

Build each component
by two independent
programmers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing when
it comes to hiring
sloppy programmers

6 / 67

Fault tolerance: Introduction to fault tolerance Failure models

Failure models

Types of failures

Type Description of server’s behavior

Crash failure Halts, but is working correctly until it halts
Omission failure Fails to respond to incoming requests

Receive omission Fails to receive incoming messages
Send omission Fails to send messages

Timing failure Response lies outside a specified time interval
Response failure Response is incorrect

Value failure The value of the response is wrong
State-transition failure Deviates from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary
times

7 / 67

Fault tolerance: Introduction to fault tolerance Failure models

Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

Omission failures: a component fails to take an action that it should have
taken

Commission failure: a component takes an action that it should not have
taken

Observation
Note that deliberate failures, be they omission or commission failures are
typically security problems. Distinguishing between deliberate failures and
unintentional ones is, in general, impossible.

8 / 67

Fault tolerance: Introduction to fault tolerance Failure models

Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

Omission failures: a component fails to take an action that it should have
taken

Commission failure: a component takes an action that it should not have
taken

Observation
Note that deliberate failures, be they omission or commission failures are
typically security problems. Distinguishing between deliberate failures and
unintentional ones is, in general, impossible.

8 / 67

Fault tolerance: Introduction to fault tolerance Failure models

Halting failures

Scenario
C no longer perceives any activity from C∗ — a halting failure? Distinguishing
between a crash or omission/timing failure may be impossible.

Asynchronous versus synchronous systems

Asynchronous system: no assumptions about process execution speeds
or message delivery times→ cannot reliably detect crash failures.

Synchronous system: process execution speeds and message delivery
times are bounded→ we can reliably detect omission and timing failures.

In practice we have partially synchronous systems: most of the time, we
can assume the system to be synchronous, yet there is no bound on the
time that a system is asynchronous→ can normally reliably detect crash
failures.

9 / 67

Fault tolerance: Introduction to fault tolerance Failure models

Halting failures

Assumptions we can make

Halting type Description

Fail-stop Crash failures, but reliably detectable
Fail-noisy Crash failures, eventually reliably detectable
Fail-silent Omission or crash failures: clients cannot tell

what went wrong
Fail-safe Arbitrary, yet benign failures (i.e., they cannot

do any harm)
Fail-arbitrary Arbitrary, with malicious failures

10 / 67

Fault tolerance: Introduction to fault tolerance Failure masking by redundancy

Redundancy for failure masking

Types of redundancy

Information redundancy: Add extra bits to data units so that errors can
recovered when bits are garbled.

Time redundancy: Design a system such that an action can be performed
again if anything went wrong. Typically used when faults are transient or
intermittent.

Physical redundancy: add equipment or processes in order to allow one
or more components to fail. This type is extensively used in distributed
systems.

11 / 67

Fault tolerance: Process resilience Resilience by process groups

Process resilience

Basic idea
Protect against malfunctioning processes through process replication,
organizing multiple processes into process group. Distinguish between flat
groups and hierarchical groups.

Flat group
Hierarchical group Coordinator

Worker

Group organization 12 / 67

Fault tolerance: Process resilience Failure masking and replication

Groups and failure masking

k -fault tolerant group

When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k -fault tolerant group need to be?

With halting failures (crash/omission/timing failures): we need a total of
k +1 members as no member will produce an incorrect result, so the
result of one member is good enough.

With arbitrary failures: we need 2k +1 members so that the correct result
can be obtained through a majority vote.

Important assumptions

All members are identical
All members process commands in the same order

Result: We can now be sure that all processes do exactly the same thing.

13 / 67

Fault tolerance: Process resilience Failure masking and replication

Groups and failure masking

k -fault tolerant group

When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k -fault tolerant group need to be?

With halting failures (crash/omission/timing failures): we need a total of
k +1 members as no member will produce an incorrect result, so the
result of one member is good enough.

With arbitrary failures: we need 2k +1 members so that the correct result
can be obtained through a majority vote.

Important assumptions

All members are identical
All members process commands in the same order

Result: We can now be sure that all processes do exactly the same thing.

13 / 67

Fault tolerance: Process resilience Failure masking and replication

Groups and failure masking

k -fault tolerant group

When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k -fault tolerant group need to be?

With halting failures (crash/omission/timing failures): we need a total of
k +1 members as no member will produce an incorrect result, so the
result of one member is good enough.

With arbitrary failures: we need 2k +1 members so that the correct result
can be obtained through a majority vote.

Important assumptions

All members are identical
All members process commands in the same order

Result: We can now be sure that all processes do exactly the same thing.

13 / 67

Fault tolerance: Process resilience Consensus in faulty systems with crash failures

Consensus

Prerequisite

In a fault-tolerant process group, each nonfaulty process executes the same
commands, and in the same order, as every other nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which command to
execute next.

14 / 67

Fault tolerance: Process resilience Consensus in faulty systems with crash failures

Flooding-based consensus

System model

A process group P = {P1, . . . ,Pn}
Fail-stop failure semantics, i.e., with reliable failure detection

A client contacts a Pi requesting it to execute a command

Every Pi maintains a list of proposed commands

Basic algorithm (based on rounds)

1 In round r , Pi multicasts its known set of commands Cr
i to all others

2 At the end of r , each Pi merges all received commands into a new Cr+1
i .

3 Next command cmdi selected through a globally shared, deterministic
function: cmdi ← select(Cr+1

i).

15 / 67

Fault tolerance: Process resilience Consensus in faulty systems with crash failures

Flooding-based consensus

System model

A process group P = {P1, . . . ,Pn}
Fail-stop failure semantics, i.e., with reliable failure detection

A client contacts a Pi requesting it to execute a command

Every Pi maintains a list of proposed commands

Basic algorithm (based on rounds)

1 In round r , Pi multicasts its known set of commands Cr
i to all others

2 At the end of r , each Pi merges all received commands into a new Cr+1
i .

3 Next command cmdi selected through a globally shared, deterministic
function: cmdi ← select(Cr+1

i).

15 / 67

Fault tolerance: Process resilience Consensus in faulty systems with crash failures

Flooding-based consensus: Example

P4

P3

P2

P1

decide

decide

decide

Observations

P2 received all proposed commands from all other processes⇒ makes
decision.

P3 may have detected that P1 crashed, but does not know if P2 received
anything, i.e., P3 cannot know if it has the same information as P2 ⇒
cannot make decision (same for P4).

16 / 67

Fault tolerance: Process resilience Example: Paxos

Realistic consensus: Paxos

Assumptions (rather weak ones, and realistic)

A partially synchronous system (in fact, it may even be asynchronous).

Communication between processes may be unreliable: messages may be
lost, duplicated, or reordered.

Corrupted message can be detected (and thus subsequently ignored).

All operations are deterministic: once an execution is started, it is known
exactly what it will do.

Processes may exhibit crash failures, but not arbitrary failures.

Processes do not collude.

Understanding Paxos

We will build up Paxos from scratch to understand where many consensus
algorithms actually come from.

Essential Paxos 17 / 67

Fault tolerance: Process resilience Example: Paxos

Paxos essentials

Starting point

We assume a client-server configuration, with initially one primary server.

To make the server more robust, we start with adding a backup server.

To ensure that all commands are executed in the same order at both
servers, the primary assigns unique sequence numbers to all commands.
In Paxos, the primary is called the leader.

Assume that actual commands can always be restored (either from clients
or servers)⇒ we consider only control messages.

Understanding Paxos 18 / 67

Fault tolerance: Process resilience Example: Paxos

Two-server situation

C2

S2

S1
Leader

C1
〈o1〉

〈o2〉

〈Seq, o2, 1〉

o2

o2

〈σ2
1 〉〈σ2

2 〉

〈Seq, o1, 2〉

o1

o1

〈σ21
1 〉 〈σ21

2 〉

Understanding Paxos 19 / 67

Fault tolerance: Process resilience Example: Paxos

Handling lost messages

Some Paxos terminology

The leader sends an accept message ACCEPT(o, t) to backups when
assigning a timestamp t to command o.

A backup responds by sending a learn message: LEARN(o, t)

When the leader notices that operation o has not yet been learned, it
retransmits ACCEPT(o, t) with the original timestamp.

Understanding Paxos 20 / 67

Fault tolerance: Process resilience Example: Paxos

Two servers and one crash: problem

C2

S2
Leader

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

o1

〈σ1
1 〉

〈Acc, o2, 1〉 o2

〈σ2
2 〉

Problem
Primary crashes after executing an operation, but the backup never received
the accept message.

Understanding Paxos 21 / 67

Fault tolerance: Process resilience Example: Paxos

Two servers and one crash: solution

C2

S2
Leader

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Lrn, o1〉

o1

o1

〈σ1
2 〉 〈σ1

1 〉

〈Acc, o2, 2〉 o2

〈σ12
2 〉

Solution
Never execute an operation before it is clear that is has been learned.

Understanding Paxos 22 / 67

Fault tolerance: Process resilience Example: Paxos

Three servers and two crashes: still a problem?

C2

S3
Leader

S2

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Lrn, o1〉

o1

o1

〈σ1
2 〉 〈σ1

1 〉

〈Acc, o2, 1〉 o2

〈σ2
3 〉

Scenario

What happens when LEARN(o1) as sent by S2 to S1 is lost?

Solution

S2 will also have to wait until it knows that S3 has learned o1.

Understanding Paxos 23 / 67

Fault tolerance: Process resilience Example: Paxos

Three servers and two crashes: still a problem?

C2

S3
Leader

S2

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Lrn, o1〉

o1

o1

〈σ1
2 〉 〈σ1

1 〉

〈Acc, o2, 1〉 o2

〈σ2
3 〉

Scenario

What happens when LEARN(o1) as sent by S2 to S1 is lost?

Solution

S2 will also have to wait until it knows that S3 has learned o1.

Understanding Paxos 23 / 67

Fault tolerance: Process resilience Example: Paxos

Three servers and two crashes: still a problem?

C2

S3
Leader

S2

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Lrn, o1〉

o1

o1

〈σ1
2 〉 〈σ1

1 〉

〈Acc, o2, 1〉 o2

〈σ2
3 〉

Scenario

What happens when LEARN(o1) as sent by S2 to S1 is lost?

Solution

S2 will also have to wait until it knows that S3 has learned o1.

Understanding Paxos 23 / 67

Fault tolerance: Process resilience Example: Paxos

Paxos: fundamental rule

General rule
In Paxos, a server S cannot execute an operation o until it has received a
LEARN(o) from all other nonfaulty servers.

Understanding Paxos 24 / 67

Fault tolerance: Process resilience Example: Paxos

Failure detection

Practice
Reliable failure detection is practically impossible. A solution is to set timeouts,
but take into account that a detected failure may be false.

C2

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Alive, o1〉

o1

〈σ1
1 〉

〈Acc, o2, 1〉 o2

〈σ2
2 〉

Understanding Paxos 25 / 67

Fault tolerance: Process resilience Example: Paxos

Failure detection

Practice
Reliable failure detection is practically impossible. A solution is to set timeouts,
but take into account that a detected failure may be false.

C2

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Alive, o1〉

o1

〈σ1
1 〉

〈Acc, o2, 1〉 o2

〈σ2
2 〉

Understanding Paxos 25 / 67

Fault tolerance: Process resilience Example: Paxos

Required number of servers

Observation
Paxos needs at least three servers

Adapted fundamental rule

In Paxos with three servers, a server S cannot execute an operation o until it
has received at least one (other) LEARN(o) message, so that it knows that a
majority of servers will execute o.

Understanding Paxos 26 / 67

Fault tolerance: Process resilience Example: Paxos

Required number of servers

Observation
Paxos needs at least three servers

Adapted fundamental rule

In Paxos with three servers, a server S cannot execute an operation o until it
has received at least one (other) LEARN(o) message, so that it knows that a
majority of servers will execute o.

Understanding Paxos 26 / 67

Fault tolerance: Process resilience Example: Paxos

Required number of servers

Assumptions before taking the next steps

Initially, S1 is the leader.
A server can reliably detect it has missed a message, and recover from
that miss.
When a new leader needs to be elected, the remaining servers follow a
strictly deterministic algorithm, such as S1 → S2 → S3 .
A client cannot be asked to help the servers to resolve a situation.

Observation
If either one of the backups (S2 or S3) crashes, Paxos will behave correctly:
operations at nonfaulty servers are executed in the same order.

Understanding Paxos 27 / 67

Fault tolerance: Process resilience Example: Paxos

Required number of servers

Assumptions before taking the next steps

Initially, S1 is the leader.
A server can reliably detect it has missed a message, and recover from
that miss.
When a new leader needs to be elected, the remaining servers follow a
strictly deterministic algorithm, such as S1 → S2 → S3 .
A client cannot be asked to help the servers to resolve a situation.

Observation
If either one of the backups (S2 or S3) crashes, Paxos will behave correctly:
operations at nonfaulty servers are executed in the same order.

Understanding Paxos 27 / 67

Fault tolerance: Process resilience Example: Paxos

Leader crashes after executing o1

S3 is completely ignorant of any activity by S1

S2 received ACCEPT(o,1), detects crash, and becomes leader.

S3 even never received ACCEPT(o,1).

S2 sends ACCEPT(o2 ,2)⇒ S3 sees unexpected timestamp and tells S2
that it missed o1.

S2 retransmits ACCEPT(o1,1), allowing S3 to catch up.

S2 missed ACCEPT(o1,1)

S2 did detect crash and became new leader

S2 sends ACCEPT(o1,1)⇒ S3 retransmits LEARN(o1).

S2 sends ACCEPT(o2 ,1)⇒ S3 tells S2 that it apparently missed
ACCEPT(o1,1) from S1, so that S2 can catch up.

Understanding Paxos 28 / 67

Fault tolerance: Process resilience Example: Paxos

Leader crashes after executing o1

S3 is completely ignorant of any activity by S1

S2 received ACCEPT(o,1), detects crash, and becomes leader.

S3 even never received ACCEPT(o,1).

S2 sends ACCEPT(o2 ,2)⇒ S3 sees unexpected timestamp and tells S2
that it missed o1.

S2 retransmits ACCEPT(o1,1), allowing S3 to catch up.

S2 missed ACCEPT(o1,1)

S2 did detect crash and became new leader

S2 sends ACCEPT(o1,1)⇒ S3 retransmits LEARN(o1).

S2 sends ACCEPT(o2 ,1)⇒ S3 tells S2 that it apparently missed
ACCEPT(o1,1) from S1, so that S2 can catch up.

Understanding Paxos 28 / 67

Fault tolerance: Process resilience Example: Paxos

Leader crashes after executing o1

S3 is completely ignorant of any activity by S1

S2 received ACCEPT(o,1), detects crash, and becomes leader.

S3 even never received ACCEPT(o,1).

S2 sends ACCEPT(o2 ,2)⇒ S3 sees unexpected timestamp and tells S2
that it missed o1.

S2 retransmits ACCEPT(o1,1), allowing S3 to catch up.

S2 missed ACCEPT(o1,1)

S2 did detect crash and became new leader

S2 sends ACCEPT(o1,1)⇒ S3 retransmits LEARN(o1).

S2 sends ACCEPT(o2 ,1)⇒ S3 tells S2 that it apparently missed
ACCEPT(o1,1) from S1, so that S2 can catch up.

Understanding Paxos 28 / 67

Fault tolerance: Process resilience Example: Paxos

Leader crashes after sending ACCEPT(o1,1)

S3 is completely ignorant of any activity by S1

As soon as S2 announces that o2 is to be accepted, S3 will notice that it
missed an operation and can ask S2 to help recover.

S2 had missed ACCEPT(o1,1)

As soon as S2 proposes an operation, it will be using a stale timestamp,
allowing S3 to tell S2 that it missed operation o1.

Observation
Paxos (with three servers) behaves correctly when a single server crashes,
regardless when that crash took place.

Understanding Paxos 29 / 67

Fault tolerance: Process resilience Example: Paxos

Leader crashes after sending ACCEPT(o1,1)

S3 is completely ignorant of any activity by S1

As soon as S2 announces that o2 is to be accepted, S3 will notice that it
missed an operation and can ask S2 to help recover.

S2 had missed ACCEPT(o1,1)

As soon as S2 proposes an operation, it will be using a stale timestamp,
allowing S3 to tell S2 that it missed operation o1.

Observation
Paxos (with three servers) behaves correctly when a single server crashes,
regardless when that crash took place.

Understanding Paxos 29 / 67

Fault tolerance: Process resilience Example: Paxos

False crash detections

C2

S3

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Acc, o2, 1〉

〈Lrn, o2〉

drop leadership

o2

〈σ2
3 〉

confusion

Problem and solution

S3 receives ACCEPT(o1,1), but much later than ACCEPT(o2 ,1). If it knew who
the current leader was, it could safely reject the delayed accept message⇒
leaders should include their ID in messages.

Understanding Paxos 30 / 67

Fault tolerance: Process resilience Example: Paxos

But what about progress?

C2

S3

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, S1, o1, 1〉

〈Lrn, o1〉 o1

〈σ1
3 〉

〈Acc, S2, o2, 1〉

〈Lrn, o2〉 o2

〈σ12
3 〉

Essence of solution
When S2 takes over, it needs to make sure than any outstanding operations
initiated by S1 have been properly flushed, i.e., executed by enough servers.
This requires an explicit leadership takeover by which other servers are
informed before sending out new accept messages.

Understanding Paxos 31 / 67

Fault tolerance: Process resilience Example: Paxos

But what about progress?

C2

S3

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, S1, o1, 1〉

〈Lrn, o1〉 o1

〈σ1
3 〉

〈Acc, S2, o2, 1〉

〈Lrn, o2〉 o2

〈σ12
3 〉

Essence of solution
When S2 takes over, it needs to make sure than any outstanding operations
initiated by S1 have been properly flushed, i.e., executed by enough servers.
This requires an explicit leadership takeover by which other servers are
informed before sending out new accept messages.

Understanding Paxos 31 / 67

Fault tolerance: Process resilience Consensus in faulty systems with arbitrary failures

Consensus under arbitrary failure semantics

Essence
We consider process groups in which communication between process is
inconsistent: (a) improper forwarding of messages, or (b) telling different things
to different processes.

P1

P2P3

a a

b

P1

P2P3

a b

b

(a) (b)

32 / 67

Fault tolerance: Process resilience Consensus in faulty systems with arbitrary failures

Consensus under arbitrary failure semantics

System model

We consider a primary P and n−1 backups B1, . . . ,Bn−1.
A client sends v ∈ {T ,F} to P
Messages may be lost, but this can be detected.
Messages cannot be corrupted beyond detection.
A receiver of a message can reliably detect its sender.

Byzantine agreement: requirements

BA1: Every nonfaulty backup process stores the same value.
BA2: If the primary is nonfaulty then every nonfaulty backup process stores

exactly what the primary had sent.

Observation
Primary faulty⇒ BA1 says that backups may store the same, but different
(and thus wrong) value than originally sent by the client.
Primary not faulty⇒ satisfying BA2 implies that BA1 is satisfied.

33 / 67

Fault tolerance: Process resilience Consensus in faulty systems with arbitrary failures

Why having 3k processes is not enough

P

B2B1

T F

T

F

{T,F} {T,F}

Faulty process

First message round

Second message round

P

B2B1

T T

F

T

{T,F}

Why having 3k processes is not enough 34 / 67

Fault tolerance: Process resilience Consensus in faulty systems with arbitrary failures

Why having 3k+1 processes is enough

B1

B3B2

T

T

T

TT

T

F

F

F

{F,{T,T}} {T,{T,F}}

P

{T,{T,F}} Faulty process

First message round

Second message round

B1

B3B2

T

T

T

TT

T

F

F

T

{T,{T,T}} {T,{T,F}}

P

{T,{T,F}}

Why having 3k+1 processes is enough 35 / 67

Fault tolerance: Process resilience Some limitations on realizing fault tolerance

Realizing fault tolerance

Observation
Considering that the members in a fault-tolerant process group are so tightly
coupled, we may bump into considerable performance problems, but perhaps
even situations in which realizing fault tolerance is impossible.

Question
Are there limitations to what can be readily achieved?

What is needed to enable reaching consensus?

What happens when groups are partitioned?

36 / 67

Fault tolerance: Process resilience Some limitations on realizing fault tolerance

Distributed consensus: when can it be reached

Synchronous

Asynchronous

OrderedUnordered

Bounded

Bounded

Unbounded

Unbounded

Unicast UnicastMulticast Multicast

X X

X

X

X

X

X

X

C
o

m
m

u
n

ic
a
tio

n
 d

e
la

yP
ro

c
e
s
s
 b

e
h

a
v
io

r

Message ordering

Message transmission

Formal requirements for consensus

Processes produce the same output value
Every output value must be valid
Every process must eventually provide output

On reaching consensus 37 / 67

Fault tolerance: Process resilience Some limitations on realizing fault tolerance

Consistency, availability, and partitioning

CAP theorem
Any networked system providing shared data can provide only two of the
following three properties:

C: consistency, by which a shared and replicated data item appears as a
single, up-to-date copy

A: availability, by which updates will always be eventually executed

P: Tolerant to the partitioning of process group.

Conclusion
In a network subject to communication failures, it is impossible to realize an
atomic read/write shared memory that guarantees a response to every request.

Consistency, availability, and partitioning 38 / 67

Fault tolerance: Process resilience Failure detection

Failure detection

Issue
How can we reliably detect that a process has actually crashed?

General model

Each process is equipped with a failure detection module

A process P probes another process Q for a reaction

If Q reacts: Q is considered to be alive (by P)

If Q does not react with t time units: Q is suspected to have crashed

Observation for a synchronous system

a suspected crash ≡ a known crash

39 / 67

Fault tolerance: Process resilience Failure detection

Practical failure detection

Implementation

If P did not receive heartbeat from Q within time t : P suspects Q.

If Q later sends a message (which is received by P):

P stops suspecting Q
P increases the timeout value t

Note: if Q did crash, P will keep suspecting Q.

40 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable remote procedure calls

What can go wrong?

1 The client is unable to locate the server.

2 The request message from the client to the server is lost.

3 The server crashes after receiving a request.

4 The reply message from the server to the client is lost.

5 The client crashes after sending a request.

Two “easy” solutions

1: (cannot locate server): just report back to client

2: (request was lost): just resend message

41 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable remote procedure calls

What can go wrong?

1 The client is unable to locate the server.

2 The request message from the client to the server is lost.

3 The server crashes after receiving a request.

4 The reply message from the server to the client is lost.

5 The client crashes after sending a request.

Two “easy” solutions

1: (cannot locate server): just report back to client

2: (request was lost): just resend message

41 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: server crash

Receive

Execute

Reply

REQ

REP

Server

Receive

Execute

Crash

REQ

No REP

Server

Receive

Crash

REQ

No REP

Server

(a) (b) (c)

Problem
Where (a) is the normal case, situations (b) and (c) require different solutions.
However, we don’t know what happened. Two approaches:

At-least-once-semantics: The server guarantees it will carry out an
operation at least once, no matter what.

At-most-once-semantics: The server guarantees it will carry out an
operation at most once.

Server crashes 42 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Why fully transparent server recovery is impossible

Three type of events at the server

(Assume the server is requested to update a document.)

M: send the completion message
P: complete the processing of the document
C: crash

Six possible orderings

(Actions between brackets never take place)

1 M → P→ C: Crash after reporting completion.
2 M → C→ P: Crash after reporting completion, but before the update.
3 P→M → C: Crash after reporting completion, and after the update.
4 P→ C(→M): Update took place, and then a crash.
5 C(→ P→M): Crash before doing anything
6 C(→M → P): Crash before doing anything

Server crashes 43 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Why fully transparent server recovery is impossible

Reissue strategy

Always

Never

Only when ACKed

Only when not ACKed

Client

Strategy M → P

MPC MC(P) C(MP)

DUP OK OK

OK ZERO ZERO

DUP OK ZERO

OK ZERO OK

Server

Strategy P → M

PMC PC(M) C(PM)

DUP DUP OK

OK OK ZERO

DUP OK ZERO

OK DUP OK

Server

OK = Document updated once
DUP = Document updated twice

ZERO = Document not update at all

Server crashes 44 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: lost reply messages

The real issue
What the client notices, is that it is not getting an answer. However, it cannot
decide whether this is caused by a lost request, a crashed server, or a lost
response.

Partial solution
Design the server such that its operations are idempotent: repeating the same
operation is the same as carrying it out exactly once:

pure read operations
strict overwrite operations

Many operations are inherently nonidempotent, such as many banking
transactions.

Lost reply messages 45 / 67

Fault tolerance: Reliable client-server communication RPC semantics in the presence of failures

Reliable RPC: client crash

Problem
The server is doing work and holding resources for nothing (called doing an
orphan computation).

Solution

Orphan is killed (or rolled back) by the client when it recovers

Client broadcasts new epoch number when recovering⇒ server kills
client’s orphans

Require computations to complete in a T time units. Old ones are simply
removed.

Client crashes 46 / 67

Fault tolerance: Reliable group communication

Simple reliable group communication

Intuition
A message sent to a process group G should be delivered to each member of
G. Important: make distinction between receiving and delivering messages.

Message reception

Message delivery

Message-handling
component

Message-handling
component

Message-handling
component

Group membership
functionality

Group membership
functionality

Group membership
functionality

Local OS Local OS Local OS

Sender Recipient Recipient

Network

47 / 67

Fault tolerance: Reliable group communication

Less simple reliable group communication

Reliable communication in the presence of faulty processes

Group communication is reliable when it can be guaranteed that a message is
received and subsequently delivered by all nonfaulty group members.

Tricky part

Agreement is needed on what the group actually looks like before a received
message can be delivered.

48 / 67

Fault tolerance: Reliable group communication

Simple reliable group communication

Reliable communication, but assume nonfaulty processes

Reliable group communication now boils down to reliable multicasting: is a
message received and delivered to each recipient, as intended by the sender.

M25

Sender Receiver Receiver Receiver Receiver

History
buffer

M25 M25 M25 M25

Last = 24 Last = 23Last = 24 Last = 24

Receiver missed
message #24

Network

Sender Receiver Receiver Receiver Receiver

M25 M25 M25 M25

Last = 25 Last = 23Last = 24 Last = 24

ACK 25 ACK 25
ACK 25Missed 24

Network

49 / 67

Fault tolerance: Distributed commit

Distributed commit protocols

Problem
Have an operation being performed by each member of a process group, or
none at all.

Reliable multicasting: a message is to be delivered to all recipients.

Distributed transaction: each local transaction must succeed.

50 / 67

Fault tolerance: Distributed commit

Two-phase commit protocol (2PC)

Essence
The client who initiated the computation acts as coordinator; processes
required to commit are the participants.

Phase 1a: Coordinator sends VOTE-REQUEST to participants (also called
a pre-write)

Phase 1b: When participant receives VOTE-REQUEST it returns either
VOTE-COMMIT or VOTE-ABORT to coordinator. If it sends VOTE-ABORT, it
aborts its local computation

Phase 2a: Coordinator collects all votes; if all are VOTE-COMMIT, it sends
GLOBAL-COMMIT to all participants, otherwise it sends GLOBAL-ABORT

Phase 2b: Each participant waits for GLOBAL-COMMIT or GLOBAL-ABORT
and handles accordingly.

51 / 67

Fault tolerance: Distributed commit

2PC - Finite state machines

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Global-commit
ACK

Coordinator Participant

52 / 67

Fault tolerance: Distributed commit

2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

INIT : No problem: participant was unaware of protocol

READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make⇒ log the
coordinator’s decision

ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

53 / 67

Fault tolerance: Distributed commit

2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

INIT : No problem: participant was unaware of protocol

READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make⇒ log the
coordinator’s decision

ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

53 / 67

Fault tolerance: Distributed commit

2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

INIT : No problem: participant was unaware of protocol

READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make⇒ log the
coordinator’s decision

ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

53 / 67

Fault tolerance: Distributed commit

2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

INIT : No problem: participant was unaware of protocol

READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make⇒ log the
coordinator’s decision

ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

53 / 67

Fault tolerance: Distributed commit

2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

INIT : No problem: participant was unaware of protocol

READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make⇒ log the
coordinator’s decision

ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

53 / 67

Fault tolerance: Distributed commit

2PC – Failing participant

Alternative
When a recovery is needed to READY state, check state of other participants
⇒ no need to log coordinator’s decision.

Recovering participant P contacts another participant Q

State of Q Action by P
COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Contact another participant

Result
If all participants are in the READY state, the protocol blocks. Apparently, the
coordinator is failing. Note: The protocol prescribes that we need the decision
from the coordinator.

54 / 67

Fault tolerance: Distributed commit

2PC – Failing coordinator

Observation
The real problem lies in the fact that the coordinator’s final decision may not be
available for some time (or actually lost).

Alternative
Let a participant P in the READY state timeout when it hasn’t received the
coordinator’s decision; P tries to find out what other participants know (as
discussed).

Observation
Essence of the problem is that a recovering participant cannot make a local
decision: it is dependent on other (possibly failed) processes

55 / 67

Fault tolerance: Distributed commit

Coordinator in Python

1 class Coordinator:
2

3 def run(self):
4 yetToReceive = list(participants)
5 self.log.info(’WAIT’)
6 self.chan.sendTo(participants, VOTE_REQUEST)
7 while len(yetToReceive) > 0:
8 msg = self.chan.recvFrom(participants, TIMEOUT)
9 if (not msg) or (msg[1] == VOTE_ABORT):

10 self.log.info(’ABORT’)
11 self.chan.sendTo(participants, GLOBAL_ABORT)
12 return
13 else: # msg[1] == VOTE_COMMIT
14 yetToReceive.remove(msg[0])
15 self.log.info(’COMMIT’)
16 self.chan.sendTo(participants, GLOBAL_COMMIT)

56 / 67

Fault tolerance: Distributed commit

Participant in Python

1 class Participant:
2 def run(self):
3 msg = self.chan.recvFrom(coordinator, TIMEOUT)
4 if (not msg): # Crashed coordinator - give up entirely
5 decision = LOCAL_ABORT
6 else: # Coordinator will have sent VOTE_REQUEST
7 decision = self.do_work()
8 if decision == LOCAL_ABORT:
9 self.chan.sendTo(coordinator, VOTE_ABORT)

10 else: # Ready to commit, enter READY state
11 self.chan.sendTo(coordinator, VOTE_COMMIT)
12 msg = self.chan.recvFrom(coordinator, TIMEOUT)
13 if (not msg): # Crashed coordinator - check the others
14 self.chan.sendTo(all_participants, NEED_DECISION)
15 while True:
16 msg = self.chan.recvFromAny()
17 if msg[1] in [GLOBAL_COMMIT, GLOBAL_ABORT, LOCAL_ABORT]:
18 decision = msg[1]
19 break
20 else: # Coordinator came to a decision
21 decision = msg[1]
22

23 while True: # Help any other participant when coordinator crashed
24 msg = self.chan.recvFrom(all_participants)
25 if msg[1] == NEED_DECISION:
26 self.chan.sendTo([msg[0]], decision)

57 / 67

Fault tolerance: Recovery Introduction

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation

Backward error recovery: Bring the system back into a previous error-free
state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes need
to cooperate in identifying a consistent state from where to recover

58 / 67

Fault tolerance: Recovery Checkpointing

Consistent recovery state

Requirement

Every message that has been received is also shown to have been sent in the
state of the sender.

Recovery line

Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection

of checkpoints

Message sent
from P2 to P1

59 / 67

Fault tolerance: Recovery Checkpointing

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution

Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint
When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Coordinated checkpointing 60 / 67

Fault tolerance: Recovery Checkpointing

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution

Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message

When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint
When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Coordinated checkpointing 60 / 67

Fault tolerance: Recovery Checkpointing

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution

Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint

When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Coordinated checkpointing 60 / 67

Fault tolerance: Recovery Checkpointing

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution

Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint
When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Coordinated checkpointing 60 / 67

Fault tolerance: Recovery Checkpointing

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution

Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint
When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Coordinated checkpointing 60 / 67

Fault tolerance: Recovery Checkpointing

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may lie at
system startup time. We have a so-called cascaded rollback.

mm*

P1

P2

Initial state

Failure

Checkpoint

Time

Independent checkpointing 61 / 67

Fault tolerance: Recovery Checkpointing

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CPi(m) denote mth checkpoint of process Pi and INTi(m) the interval
between CPi(m−1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks
(i ,m)

When process Pj receives a message in interval INTj(n), it records the
dependency INTi(m)→ INTj(n).

The dependency INTi(m)→ INTj(n) is saved to storage when taking
checkpoint CPj(n).

Observation

If process Pi rolls back to CPi(m−1), Pj must roll back to CPj(n−1).

Independent checkpointing 62 / 67

Fault tolerance: Recovery Checkpointing

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CPi(m) denote mth checkpoint of process Pi and INTi(m) the interval
between CPi(m−1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks
(i ,m)

When process Pj receives a message in interval INTj(n), it records the
dependency INTi(m)→ INTj(n).

The dependency INTi(m)→ INTj(n) is saved to storage when taking
checkpoint CPj(n).

Observation

If process Pi rolls back to CPi(m−1), Pj must roll back to CPj(n−1).

Independent checkpointing 62 / 67

Fault tolerance: Recovery Checkpointing

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CPi(m) denote mth checkpoint of process Pi and INTi(m) the interval
between CPi(m−1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks
(i ,m)

When process Pj receives a message in interval INTj(n), it records the
dependency INTi(m)→ INTj(n).

The dependency INTi(m)→ INTj(n) is saved to storage when taking
checkpoint CPj(n).

Observation

If process Pi rolls back to CPi(m−1), Pj must roll back to CPj(n−1).

Independent checkpointing 62 / 67

Fault tolerance: Recovery Checkpointing

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CPi(m) denote mth checkpoint of process Pi and INTi(m) the interval
between CPi(m−1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks
(i ,m)

When process Pj receives a message in interval INTj(n), it records the
dependency INTi(m)→ INTj(n).

The dependency INTi(m)→ INTj(n) is saved to storage when taking
checkpoint CPj(n).

Observation

If process Pi rolls back to CPi(m−1), Pj must roll back to CPj(n−1).

Independent checkpointing 62 / 67

Fault tolerance: Recovery Checkpointing

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CPi(m) denote mth checkpoint of process Pi and INTi(m) the interval
between CPi(m−1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks
(i ,m)

When process Pj receives a message in interval INTj(n), it records the
dependency INTi(m)→ INTj(n).

The dependency INTi(m)→ INTj(n) is saved to storage when taking
checkpoint CPj(n).

Observation

If process Pi rolls back to CPi(m−1), Pj must roll back to CPj(n−1).

Independent checkpointing 62 / 67

Fault tolerance: Recovery Checkpointing

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CPi(m) denote mth checkpoint of process Pi and INTi(m) the interval
between CPi(m−1) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks
(i ,m)

When process Pj receives a message in interval INTj(n), it records the
dependency INTi(m)→ INTj(n).

The dependency INTi(m)→ INTj(n) is saved to storage when taking
checkpoint CPj(n).

Observation

If process Pi rolls back to CPi(m−1), Pj must roll back to CPj(n−1).

Independent checkpointing 62 / 67

Fault tolerance: Recovery Message logging

Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your (communication)
behavior from the most recent checkpoint⇒ store messages in a log.

Assumption

We assume a piecewise deterministic execution model:

The execution of each process can be considered as a sequence of state
intervals
Each state interval starts with a nondeterministic event (e.g., message
receipt)
Execution in a state interval is deterministic

Conclusion
If we record nondeterministic events (to replay them later), we obtain a
deterministic execution model that will allow us to do a complete replay.

63 / 67

Fault tolerance: Recovery Message logging

Message logging and consistency

When should we actually log messages?

Avoid orphan processes:

Process Q has just received and delivered messages m1 and m2
Assume that m2 is never logged.
After delivering m1 and m2 , Q sends message m3 to process R
Process R receives and subsequently delivers m3 : it is an orphan.

Time

P

Q

R

Q crashes and recovers

m1

m2 m2 m3m3

m1 m2 is never replayed,
so neither will m3

Unlogged message

Logged message

64 / 67

Fault tolerance: Recovery Message logging

Message-logging schemes

Notations

DEP(m): processes to which m has been delivered. If message m∗ is
causally dependent on the delivery of m, and m∗ has been delivered to Q,
then Q ∈ DEP(m).

COPY(m): processes that have a copy of m, but have not (yet) reliably
stored it.

FAIL: the collection of crashed processes.

Characterization

Q is orphaned⇔∃m : Q ∈ DEP(m) and COPY(m)⊆ FAIL

65 / 67

Fault tolerance: Recovery Message logging

Message-logging schemes

Pessimistic protocol

For each nonstable message m, there is at most one process dependent on m,
that is |DEP(m)| ≤ 1.

Consequence

An unstable message in a pessimistic protocol must be made stable before
sending a next message.

66 / 67

Fault tolerance: Recovery Message logging

Message-logging schemes

Optimistic protocol

For each unstable message m, we ensure that if COPY(m)⊆ FAIL, then
eventually also DEP(m)⊆ FAIL.

Consequence

To guarantee that DEP(m)⊆ FAIL, we generally rollback each orphan process
Q until Q 6∈ DEP(m).

67 / 67

	Fault tolerance
	Introduction to fault tolerance
	Basic concepts
	Failure models
	Failure masking by redundancy

	Process resilience
	Resilience by process groups
	Failure masking and replication
	Consensus in faulty systems with crash failures
	Example: Paxos
	Consensus in faulty systems with arbitrary failures
	Some limitations on realizing fault tolerance
	Failure detection

	Reliable client-server communication
	Point-to-point communication
	RPC semantics in the presence of failures

	Reliable group communication
	Atomic multicast

	Distributed commit
	Recovery
	Introduction
	Checkpointing
	Message logging

