
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications

Ion Stoica �, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan
�

MIT Laboratory for Computer Science
chord@lcs.mit.edu

http://pdos.lcs.mit.edu/chord/

Abstract
A fundamental problem that confronts peer-to-peer applications is
to efficiently locate the node that stores a particular data item. This
paper presents Chord, a distributed lookup protocol that addresses
this problem. Chord provides support for just one operation: given
a key, it maps the key onto a node. Data location can be easily
implemented on top of Chord by associating a key with each data
item, and storing the key/data item pair at the node to which the
key maps. Chord adapts efficiently as nodes join and leave the
system, and can answer queries even if the system is continuously
changing. Results from theoretical analysis, simulations, and ex-
periments show that Chord is scalable, with communication cost
and the state maintained by each node scaling logarithmically with
the number of Chord nodes.

1. Introduction
Peer-to-peer systems and applications are distributed systems

without any centralized control or hierarchical organization, where
the software running at each node is equivalent in functionality.
A review of the features of recent peer-to-peer applications yields
a long list: redundant storage, permanence, selection of nearby
servers, anonymity, search, authentication, and hierarchical nam-
ing. Despite this rich set of features, the core operation in most
peer-to-peer systems is efficient location of data items. The contri-
bution of this paper is a scalable protocol for lookup in a dynamic
peer-to-peer system with frequent node arrivals and departures.

The Chord protocol supports just one operation: given a key,
it maps the key onto a node. Depending on the application using
Chord, that node might be responsible for storing a value associated
with the key. Chord uses a variant of consistent hashing [11] to
assign keys to Chord nodes. Consistent hashing tends to balance
load, since each node receives roughly the same number of keys,
�
University of California, Berkeley. istoica@cs.berkeley.edu�
Authors in reverse alphabetical order.

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Space and Naval Warfare Sys-
tems Center, San Diego, under contract N66001-00-1-8933.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

and involves relatively little movement of keys when nodes join
and leave the system.

Previous work on consistent hashing assumed that nodes were
aware of most other nodes in the system, making it impractical to
scale to large number of nodes. In contrast, each Chord node needs
“routing” information about only a few other nodes. Because the
routing table is distributed, a node resolves the hash function by
communicating with a few other nodes. In the steady state, in
an � -node system, each node maintains information only about�����	��
 �� other nodes, and resolves all lookups via

�����	��
 �� mes-
sages to other nodes. Chord maintains its routing information as
nodes join and leave the system; with high probability each such
event results in no more than

�����	��
�� �� messages.
Three features that distinguish Chord from many other peer-to-

peer lookup protocols are its simplicity, provable correctness, and
provable performance. Chord is simple, routing a key through a se-
quence of

�����	��
 ��� other nodes toward the destination. A Chord
node requires information about

�����	��
 ��� other nodes for efficient
routing, but performance degrades gracefully when that informa-
tion is out of date. This is important in practice because nodes will
join and leave arbitrarily, and consistency of even

�����	��
 �� state
may be hard to maintain. Only one piece information per node need
be correct in order for Chord to guarantee correct (though slow)
routing of queries; Chord has a simple algorithm for maintaining
this information in a dynamic environment.

The rest of this paper is structured as follows. Section 2 com-
pares Chord to related work. Section 3 presents the system model
that motivates the Chord protocol. Section 4 presents the base
Chord protocol and proves several of its properties, while Section 5
presents extensions to handle concurrent joins and failures. Sec-
tion 6 demonstrates our claims about Chord’s performance through
simulation and experiments on a deployed prototype. Finally, we
outline items for future work in Section 7 and summarize our con-
tributions in Section 8.

2. Related Work
While Chord maps keys onto nodes, traditional name and lo-

cation services provide a direct mapping between keys and val-
ues. A value can be an address, a document, or an arbitrary data
item. Chord can easily implement this functionality by storing each
key/value pair at the node to which that key maps. For this reason
and to make the comparison clearer, the rest of this section assumes
a Chord-based service that maps keys onto values.

DNS provides a host name to IP address mapping [15]. Chord
can provide the same service with the name representing the key
and the associated IP address representing the value. Chord re-
quires no special servers, while DNS relies on a set of special root

cgrant

servers. DNS names are structured to reflect administrative bound-
aries; Chord imposes no naming structure. DNS is specialized to
the task of finding named hosts or services, while Chord can also
be used to find data objects that are not tied to particular machines.

The Freenet peer-to-peer storage system [4, 5], like Chord, is
decentralized and symmetric and automatically adapts when hosts
leave and join. Freenet does not assign responsibility for docu-
ments to specific servers; instead, its lookups take the form of
searches for cached copies. This allows Freenet to provide a degree
of anonymity, but prevents it from guaranteeing retrieval of existing
documents or from providing low bounds on retrieval costs. Chord
does not provide anonymity, but its lookup operation runs in pre-
dictable time and always results in success or definitive failure.

The Ohaha system uses a consistent hashing-like algorithm for
mapping documents to nodes, and Freenet-style query routing [18].
As a result, it shares some of the weaknesses of Freenet. Archival
Intermemory uses an off-line computed tree to map logical ad-
dresses to machines that store the data [3].

The Globe system [2] has a wide-area location service to map ob-
ject identifiers to the locations of moving objects. Globe arranges
the Internet as a hierarchy of geographical, topological, or adminis-
trative domains, effectively constructing a static world-wide search
tree, much like DNS. Information about an object is stored in a
particular leaf domain, and pointer caches provide search short
cuts [22]. The Globe system handles high load on the logical root
by partitioning objects among multiple physical root servers us-
ing hash-like techniques. Chord performs this hash function well
enough that it can achieve scalability without also involving any
hierarchy, though Chord does not exploit network locality as well
as Globe.

The distributed data location protocol developed by Plaxton et
al. [19], a variant of which is used in OceanStore [12], is perhaps
the closest algorithm to the Chord protocol. It provides stronger
guarantees than Chord: like Chord it guarantees that queries make
a logarithmic number hops and that keys are well balanced, but the
Plaxton protocol also ensures, subject to assumptions about net-
work topology, that queries never travel further in network distance
than the node where the key is stored. The advantage of Chord
is that it is substantially less complicated and handles concurrent
node joins and failures well. The Chord protocol is also similar to
Pastry, the location algorithm used in PAST [8]. However, Pastry
is a prefix-based routing protocol, and differs in other details from
Chord.

CAN uses a
�

-dimensional Cartesian coordinate space (for some
fixed

�
) to implement a distributed hash table that maps keys onto

values [20]. Each node maintains
��� � � state, and the lookup cost

is
��� � ��� ��� � . Thus, in contrast to Chord, the state maintained by a

CAN node does not depend on the network size � , but the lookup
cost increases faster than

�	��
 � . If
��� �	��
 � , CAN lookup times

and storage needs match Chord’s. However, CAN is not designed
to vary

�
as � (and thus

�	��
 �) varies, so this match will only occur
for the “right” � corresponding to the fixed

�
. CAN requires an

additional maintenance protocol to periodically remap the identifier
space onto nodes. Chord also has the advantage that its correctness
is robust in the face of partially incorrect routing information.

Chord’s routing procedure may be thought of as a one-
dimensional analogue of the Grid location system [14]. Grid relies
on real-world geographic location information to route its queries;
Chord maps its nodes to an artificial one-dimensional space within
which routing is carried out by an algorithm similar to Grid’s.

Chord can be used as a lookup service to implement a variety
of systems, as discussed in Section 3. In particular, it can help
avoid single points of failure or control that systems like Napster

possess [17], and the lack of scalability that systems like Gnutella
display because of their widespread use of broadcasts [10].

3. System Model
Chord simplifies the design of peer-to-peer systems and applica-

tions based on it by addressing these difficult problems:

� Load balance: Chord acts as a distributed hash function,
spreading keys evenly over the nodes; this provides a degree
of natural load balance.

� Decentralization: Chord is fully distributed: no node is
more important than any other. This improves robustness and
makes Chord appropriate for loosely-organized peer-to-peer
applications.

� Scalability: The cost of a Chord lookup grows as the log of
the number of nodes, so even very large systems are feasible.
No parameter tuning is required to achieve this scaling.

� Availability: Chord automatically adjusts its internal tables
to reflect newly joined nodes as well as node failures, ensur-
ing that, barring major failures in the underlying network, the
node responsible for a key can always be found. This is true
even if the system is in a continuous state of change.

� Flexible naming: Chord places no constraints on the struc-
ture of the keys it looks up: the Chord key-space is flat. This
gives applications a large amount of flexibility in how they
map their own names to Chord keys.

The Chord software takes the form of a library to be linked with
the client and server applications that use it. The application in-
teracts with Chord in two main ways. First, Chord provides a
lookup(key) algorithm that yields the IP address of the node
responsible for the key. Second, the Chord software on each node
notifies the application of changes in the set of keys that the node
is responsible for. This allows the application software to, for ex-
ample, move corresponding values to their new homes when a new
node joins.

The application using Chord is responsible for providing any de-
sired authentication, caching, replication, and user-friendly naming
of data. Chord’s flat key space eases the implementation of these
features. For example, an application could authenticate data by
storing it under a Chord key derived from a cryptographic hash of
the data. Similarly, an application could replicate data by storing it
under two distinct Chord keys derived from the data’s application-
level identifier.

The following are examples of applications for which Chord
would provide a good foundation:

Cooperative Mirroring, as outlined in a recent proposal [6].
Imagine a set of software developers, each of whom wishes
to publish a distribution. Demand for each distribution might
vary dramatically, from very popular just after a new release
to relatively unpopular between releases. An efficient ap-
proach for this would be for the developers to cooperatively
mirror each others’ distributions. Ideally, the mirroring sys-
tem would balance the load across all servers, replicate and
cache the data, and ensure authenticity. Such a system should
be fully decentralized in the interests of reliability, and be-
cause there is no natural central administration.

Time-Shared Storage for nodes with intermittent connectivity. If
a person wishes some data to be always available, but their

2

Server

Chord Chord Chord

File System

Block Store Block Store Block Store

Client Server

Figure 1: Structure of an example Chord-based distributed
storage system.

machine is only occasionally available, they can offer to store
others’ data while they are up, in return for having their data
stored elsewhere when they are down. The data’s name can
serve as a key to identify the (live) Chord node responsible
for storing the data item at any given time. Many of the
same issues arise as in the Cooperative Mirroring applica-
tion, though the focus here is on availability rather than load
balance.

Distributed Indexes to support Gnutella- or Napster-like keyword
search. A key in this application could be derived from the
desired keywords, while values could be lists of machines
offering documents with those keywords.

Large-Scale Combinatorial Search, such as code breaking. In
this case keys are candidate solutions to the problem (such as
cryptographic keys); Chord maps these keys to the machines
responsible for testing them as solutions.

Figure 1 shows a possible three-layered software structure for a
cooperative mirror system. The highest layer would provide a file-
like interface to users, including user-friendly naming and authenti-
cation. This “file system” layer might implement named directories
and files, mapping operations on them to lower-level block opera-
tions. The next layer, a “block storage” layer, would implement
the block operations. It would take care of storage, caching, and
replication of blocks. The block storage layer would use Chord to
identify the node responsible for storing a block, and then talk to
the block storage server on that node to read or write the block.

4. The Base Chord Protocol
The Chord protocol specifies how to find the locations of keys,

how new nodes join the system, and how to recover from the failure
(or planned departure) of existing nodes. This section describes a
simplified version of the protocol that does not handle concurrent
joins or failures. Section 5 describes enhancements to the base pro-
tocol to handle concurrent joins and failures.

4.1 Overview
At its heart, Chord provides fast distributed computation of a

hash function mapping keys to nodes responsible for them. It uses
consistent hashing [11, 13], which has several good properties.
With high probability the hash function balances load (all nodes
receive roughly the same number of keys). Also with high prob-
ability, when an � ��� node joins (or leaves) the network, only an������� ��� fraction of the keys are moved to a different location—
this is clearly the minimum necessary to maintain a balanced load.

0

6

1

2

3

4

5

6

7

1

2

successor(2) = 3

successor(6) = 0

successor(1) = 1

Figure 2: An identifier circle consisting of the three nodes 0, 1,
and 3. In this example, key 1 is located at node 1, key 2 at node
3, and key 6 at node 0.

Chord improves the scalability of consistent hashing by avoid-
ing the requirement that every node know about every other node.
A Chord node needs only a small amount of “routing” informa-
tion about other nodes. Because this information is distributed, a
node resolves the hash function by communicating with a few other
nodes. In an � -node network, each node maintains information
only about

����� ��
 ��� other nodes, and a lookup requires
�����	��
 ��

messages.
Chord must update the routing information when a node joins or

leaves the network; a join or leave requires
�����	��
 � ��� messages.

4.2 Consistent Hashing
The consistent hash function assigns each node and key an � -bit

identifier using a base hash function such as SHA-1 [9]. A node’s
identifier is chosen by hashing the node’s IP address, while a key
identifier is produced by hashing the key. We will use the term
“key” to refer to both the original key and its image under the hash
function, as the meaning will be clear from context. Similarly, the
term “node” will refer to both the node and its identifier under the
hash function. The identifier length � must be large enough to
make the probability of two nodes or keys hashing to the same iden-
tifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers
are ordered in an identifier circle modulo �
	 . Key � is assigned to
the first node whose identifier is equal to or follows (the identifier
of) � in the identifier space. This node is called the successor node
of key � , denoted by successor

� ��� . If identifiers are represented as
a circle of numbers from � to �
	� �

, then ����������������� � � � is the
first node clockwise from � .

Figure 2 shows an identifier circle with � ���
. The circle has

three nodes: 0, 1, and 3. The successor of identifier 1 is node 1, so
key 1 would be located at node 1. Similarly, key 2 would be located
at node 3, and key 6 at node 0.

Consistent hashing is designed to let nodes enter and leave the
network with minimal disruption. To maintain the consistent hash-
ing mapping when a node � joins the network, certain keys previ-
ously assigned to � ’s successor now become assigned to � . When
node � leaves the network, all of its assigned keys are reassigned
to � ’s successor. No other changes in assignment of keys to nodes
need occur. In the example above, if a node were to join with iden-
tifier 7, it would capture the key with identifier 6 from the node
with identifier 0.

The following results are proven in the papers that introduced
consistent hashing [11, 13]:

THEOREM 1. For any set of � nodes and � keys, with high
probability:

1. Each node is responsible for at most
��� �"! ��� � � keys

3

2. When an
� � � � � � � node joins or leaves the network, respon-

sibility for
��� � � ��� keys changes hands (and only to or from

the joining or leaving node).

When consistent hashing is implemented as described above, the
theorem proves a bound of

! � �����	��
 ��� . The consistent hashing
paper shows that

!
can be reduced to an arbitrarily small constant

by having each node run
����� ��
 ��� “virtual nodes” each with its

own identifier.
The phrase “with high probability” bears some discussion. A

simple interpretation is that the nodes and keys are randomly cho-
sen, which is plausible in a non-adversarial model of the world.
The probability distribution is then over random choices of keys
and nodes, and says that such a random choice is unlikely to pro-
duce an unbalanced distribution. One might worry, however, about
an adversary who intentionally chooses keys to all hash to the same
identifier, destroying the load balancing property. The consistent
hashing paper uses “ � -universal hash functions” to provide certain
guarantees even in the case of nonrandom keys.

Rather than using a � -universal hash function, we chose to use
the standard SHA-1 function as our base hash function. This makes
our protocol deterministic, so that the claims of “high probability”
no longer make sense. However, producing a set of keys that collide
under SHA-1 can be seen, in some sense, as inverting, or “decrypt-
ing” the SHA-1 function. This is believed to be hard to do. Thus,
instead of stating that our theorems hold with high probability, we
can claim that they hold “based on standard hardness assumptions.”

For simplicity (primarily of presentation), we dispense with the
use of virtual nodes. In this case, the load on a node may exceed the
average by (at most) an

�����	��
 �� factor with high probability (or
in our case, based on standard hardness assumptions). One reason
to avoid virtual nodes is that the number needed is determined by
the number of nodes in the system, which may be difficult to deter-
mine. Of course, one may choose to use an a priori upper bound on
the number of nodes in the system; for example, we could postulate
at most one Chord server per IPv4 address. In this case running 32
virtual nodes per physical node would provide good load balance.

4.3 Scalable Key Location
A very small amount of routing information suffices to imple-

ment consistent hashing in a distributed environment. Each node
need only be aware of its successor node on the circle. Queries
for a given identifier can be passed around the circle via these suc-
cessor pointers until they first encounter a node that succeeds the
identifier; this is the node the query maps to. A portion of the Chord
protocol maintains these successor pointers, thus ensuring that all
lookups are resolved correctly. However, this resolution scheme is
inefficient: it may require traversing all � nodes to find the ap-
propriate mapping. To accelerate this process, Chord maintains
additional routing information. This additional information is not
essential for correctness, which is achieved as long as the successor
information is maintained correctly.

As before, let � be the number of bits in the key/node identifiers.
Each node, � , maintains a routing table with (at most) � entries,
called the finger table. The

� ���
entry in the table at node � contains

the identity of the first node, � , that succeeds � by at least �
���
� on

the identifier circle, i.e., � � ����� ����������� � � � �
���
� � , where

���
� � � (and all arithmetic is modulo ��). We call node � the

� ���
finger of node � , and denote it by �	� finger
 ��� � node (see Table 1).
A finger table entry includes both the Chord identifier and the IP
address (and port number) of the relevant node. Note that the first
finger of � is its immediate successor on the circle; for convenience
we often refer to it as the successor rather than the first finger.

In the example shown in Figure 3(b), the finger table of node
�

Notation Definition
finger
 � � � ���� ��� � � � ��� � � � mod ��	 ,

��� � � �
� interval
 finger
 � � � start � finger
 � � � � � start �
� � � � � first node �"�	� finger
 � � � start

successor the next node on the identifier circle;
finger
 � � � node

predecessor the previous node on the identifier circle

Table 1: Definition of variables for node � , using � -bit identi-
fiers.

points to the successor nodes of identifiers
��� � ��� � mod ��� � � ,��� � � � � mod ��� � �

, and
��� � � � � mod ��� ���

, respectively.
The successor of identifier � is node

�
, as this is the first node that

follows � , the successor of identifier
�

is (trivially) node
�
, and the

successor of
�

is node � .
This scheme has two important characteristics. First, each node

stores information about only a small number of other nodes, and
knows more about nodes closely following it on the identifier circle
than about nodes farther away. Second, a node’s finger table gener-
ally does not contain enough information to determine the succes-
sor of an arbitrary key � . For example, node 3 in Figure 3 does not
know the successor of 1, as

�
’s successor (node 1) does not appear

in node
�
’s finger table.

What happens when a node � does not know the successor of a
key � ? If � can find a node whose ID is closer than its own to � ,
that node will know more about the identifier circle in the region
of � than � does. Thus � searches its finger table for the node �
whose ID most immediately precedes � , and asks � for the node it
knows whose ID is closest to � . By repeating this process, � learns
about nodes with IDs closer and closer to � .

The pseudocode that implements the search process is shown in
Figure 4. The notation n.foo() stands for the function foo() be-
ing invoked at and executed on node � . Remote calls and variable
references are preceded by the remote node identifier, while local
variable references and procedure calls omit the local node. Thus
n.foo() denotes a remote procedure call on node � , while n.bar,
without parentheses, is an RPC to lookup a variable bar on node � .

find successor works by finding the immediate predecessor node
of the desired identifier; the successor of that node must be the
successor of the identifier. We implement find predecessor explic-
itly, because it is used later to implement the join operation (Sec-
tion 4.4).

When node � executes find predecessor, it contacts a series of
nodes moving forward around the Chord circle towards

� �
. If node

� contacts a node ��� such that
� �

falls between ��� and the successor
of ��� , find predecessor is done and returns ��� . Otherwise node �
asks � � for the node � � knows about that most closely precedes

� �
.

Thus the algorithm always makes progress towards the precedessor
of
� �

.
As an example, consider the Chord ring in Figure 3(b). Suppose

node
�

wants to find the successor of identifier
�
. Since

�
belongs

to the circular interval
 !� � � , it belongs to
� � finger
 � � � interval; node�

therefore checks the third entry in its finger table, which is � .
Because � precedes

�
, node

�
will ask node � to find the successor

of
�
. In turn, node � will infer from its finger table that

�
’s successor

is the node
�

itself, and return node 1 to node 3.
The finger pointers at repeatedly doubling distances around the

circle cause each iteration of the loop in find predecessor to halve
the distance to the target identifier. From this intuition follows a
theorem:

4

0
1

2

3

4

5

6

7

finger[1].interval =
[finger[1].start,

finger[2].start)

finger[2].interval = [finger[2].start, finger[3].start)

finger[3].interval = [finger[3].start, 1)

finger[1].start = 2

finger[2].start = 3
finger[3].start = 5

(a)

0

1 [1,2) 1
2 [2,4) 3
4 [4,0) 0

start int. succ.
finger table keys

6

1

2

3

4

5

6

7 2 [2,3) 3
3 [3,5) 3
5 [5,1) 0

start int. succ.
finger table keys

1

4 [4,5) 0
5 [5,7) 0
7 [7,3) 0

start int. succ.
finger table keys

2

(b)

Figure 3: (a) The finger intervals associated with node 1. (b) Finger tables and key locations for a net with nodes 0, 1, and 3, and keys 1, 2, and 6.

THEOREM 2. With high probability (or under standard hard-
ness assumptions), the number of nodes that must be contacted to
find a successor in an � -node network is

����� ��
 ��� .

PROOF. Suppose that node � wishes to resolve a query for the
successor of � . Let � be the node that immediately precedes � . We
analyze the number of query steps to reach � .

Recall that if ���� � , then � forwards its query to the closest
predecessor of � in its finger table. Suppose that node � is in the

� ���
finger interval of node � . Then since this interval is not empty, node
� will finger some node � in this interval. The distance (number of
identifiers) between � and � is at least �

���
� . But � and � are both

in � ’s
� ���

finger interval, which means the distance between them is
at most �

���
� . This means � is closer to � than to � , or equivalently,

that the distance from � to � is at most half the distance from � to� .
If the distance between the node handling the query and the pre-

decessor � halves in each step, and is at most � 	 initially, then
within � steps the distance will be one, meaning we have arrived
at � .

In fact, as discussed above, we assume that node and key identi-
fiers are random. In this case, the number of forwardings necessary
will be

�����	��
 ��� with high probability. After
�	��
 � forwardings,

the distance between the current query node and the key � will be
reduced to at most � 	 � � . The expected number of node identi-
fiers landing in a range of this size is 1, and it is

�����	��
 �� with
high probability. Thus, even if the remaining steps advance by only
one node at a time, they will cross the entire remaining interval and
reach key � within another

�����	��
 ��� steps.

In the section reporting our experimental results (Section 6), we
will observe (and justify) that the average lookup time is �� �	��
 � .

4.4 Node Joins
In a dynamic network, nodes can join (and leave) at any time.

The main challenge in implementing these operations is preserving
the ability to locate every key in the network. To achieve this goal,
Chord needs to preserve two invariants:

1. Each node’s successor is correctly maintained.

2. For every key � , node ����� ����������� � ��� is responsible for � .

In order for lookups to be fast, it is also desirable for the finger
tables to be correct.

This section shows how to maintain these invariants when a sin-
gle node joins. We defer the discussion of multiple nodes joining
simultaneously to Section 5, which also discusses how to handle

// ask node � to find ��� ’s successor
�	�
	�� ������������������������

� �� find predecessor ��� �!� ;
return � � � successor;

// ask node � to find ��� ’s predecessor
�	�
	�� "#������!�������������$�����

� � � � ;
while ��� �&%' �$� �)(� � � successor *$�

� �� � � � closest preceding finger �$����� ;
return � � ;

// return closest finger preceding ���
�	� ��+,�����!��- "#���!�����/.$�10
	�102�!�!�$�����

for � �43 downto 5
if � finger 6 ��*�� node

' ��� (�����7�
return finger 6 �$*�� node;

return � ;

Figure 4: The pseudocode to find the successor node of an iden-
tifier

� �
. Remote procedure calls and variable lookups are pre-

ceded by the remote node.

a node failure. Before describing the join operation, we summa-
rize its performance (the proof of this theorem is in the companion
technical report [21]):

THEOREM 3. With high probability, any node joining or leav-
ing an � -node Chord network will use

�����	��
 � ��� messages to
re-establish the Chord routing invariants and finger tables.

To simplify the join and leave mechanisms, each node in Chord
maintains a predecessor pointer. A node’s predecessor pointer con-
tains the Chord identifier and IP address of the immediate predeces-
sor of that node, and can be used to walk counterclockwise around
the identifier circle.

To preserve the invariants stated above, Chord must perform
three tasks when a node � joins the network:

1. Initialize the predecessor and fingers of node � .

2. Update the fingers and predecessors of existing nodes to re-
flect the addition of � .

3. Notify the higher layer software so that it can transfer state
(e.g. values) associated with keys that node � is now respon-
sible for.

We assume that the new node learns the identity of an existing
Chord node � � by some external mechanism. Node � uses � � to

5

0

1 [1,2) 1
2 [2,4) 3
4 [4,0) 6

start int. succ.
finger table keys

1

2

3

4

5

6

7 2 [2,3) 3
3 [3,5) 3
5 [5,1) 6

start int. succ.
finger table keys

1

4 [4,5) 6
5 [5,7) 6
7 [7,3) 0

start int. succ.
finger table keys

2

7 [7,0) 0
0 [0,2) 0
2 [2,6) 3

start int. succ.
finger table keys

6

(a)

0

1 [1,2) 0
2 [2,4) 3
4 [4,0) 6

start int. succ.
finger table keys

1

2

3

4

5

6

7

4 [4,5) 6
5 [5,7) 6
7 [7,3) 0

start int. succ.
finger table keys

1

7 [7,0) 0
0 [0,2) 0
2 [2,6) 3

start int. succ.
finger table keys

6

2

(b)

Figure 5: (a) Finger tables and key locations after node 6 joins. (b) Finger tables and key locations after node 3 leaves. Changed entries are shown
in black, and unchanged in gray.

initialize its state and add itself to the existing Chord network, as
follows.

Initializing fingers and predecessor: Node � learns its pre-
decessor and fingers by asking � � to look them up, using the
init finger table pseudocode in Figure 6. Naively performing
find successor for each of the � finger entries would give a run-
time of

��� � � ��
 ��� . To reduce this, � checks whether the
� ���

finger is also the correct
� � � � � ��� finger, for each

�
. This hap-

pens when finger
 ��� � interval does not contain any node, and thus
finger
 ��� � node � finger
 � � � � � start. It can be shown that the change
reduces the expected (and high probability) number of finger en-
tries that must be looked up to

����� ��
 ��� , which reduces the overall
time to

�����	��
 � ��� .
As a practical optimization, a newly joined node � can ask an

immediate neighbor for a copy of its complete finger table and its
predecessor. � can use the contents of these tables as hints to help
it find the correct values for its own tables, since � ’s tables will be
similar to its neighbors’. This can be shown to reduce the time to
fill the finger table to

����� ��
 ��� .
Updating fingers of existing nodes: Node � will need to be en-
tered into the finger tables of some existing nodes. For example, in
Figure 5(a), node 6 becomes the third finger of nodes 0 and 1, and
the first and the second finger of node 3.

Figure 6 shows the pseudocode of the update finger table func-
tion that updates existing finger tables. Node � will become the

� ���
finger of node � if and only if (1) � precedes � by at least �

���
� , and

(2) the
� ���

finger of node � succeeds � . The first node, � , that can
meet these two conditions is the immediate predecessor of � �

���
� .

Thus, for a given � , the algorithm starts with the
� ���

finger of node
� , and then continues to walk in the counter-clock-wise direction
on the identifier circle until it encounters a node whose

� ���
finger

precedes � .
We show in the technical report [21] that the number of nodes

that need to be updated when a node joins the network is
�����	��
 ���

with high probability. Finding and updating these nodes takes�����	��
�� ��� time. A more sophisticated scheme can reduce this time
to
�����	��
 �� ; however, we do not present it as we expect implemen-

tations to use the algorithm of the following section.

Transferring keys: The last operation that has to be performed
when a node � joins the network is to move responsibility for all
the keys for which node � is now the successor. Exactly what this
entails depends on the higher-layer software using Chord, but typi-
cally it would involve moving the data associated with each key to
the new node. Node � can become the successor only for keys that
were previously the responsibility of the node immediately follow-

#define successor finger 6 5 *�� node

// node � joins the network;
// � � is an arbitrary node in the network
�	� � ��.$� ��� � �

if (� �)
init finger table(� �);
update others();
// move keys in � ����� �����	��
�
��� (�2* from successor

else // � is the only node in the network
for � � 5 to 3

finger 6 ��*�� node � � ;
predecessor � � ;

// initialize finger table of local node;
// � � is an arbitrary node already in the network
�	� .$�#.,-
	�10 �!� -����/+ � ��� � �

finger 6 5 *�� node � � � � find successor ��� � ��������6 5 *��
��������7� ;
predecessor � successor � predecessor;
successor � predecessor � � ;
for � � 5 to 3�� 5

if � finger 6 ���45 *�� start
' 6 � (finger 6 �$*�� node �7�

finger 6 ���45 *�� node � finger 6 ��*�� node �
else

finger 6 ���45 *�� node �
� � � find successor � finger 6 ���45 *�� start � ;

// update all nodes whose finger
// tables should refer to �
�	� �" ��� - � � -��1������� �

for � � 5 to 3
// find last node � whose � ��� finger might be �
� � find predecessor �$� �!

���
� � ;

�� update finger table �$� (� � ;
// if
 is � ��� finger of � , update � ’s finger table with

�	� �" ��� - �
	�10 �!� -����/+ � ��
 (� �

if �"
 ' 6 � (finger 6 ��*�� node �7�
finger 6 ��*�� node �
 ;
� � predecessor; // get first node preceding �
�� update finger table ��
 (� � ;

Figure 6: Pseudocode for the node join operation.

6

ing � , so � only needs to contact that one node to transfer respon-
sibility for all relevant keys.

5. Concurrent Operations and Failures
In practice Chord needs to deal with nodes joining the system

concurrently and with nodes that fail or leave voluntarily. This
section describes modifications to the basic Chord algorithms de-
scribed in Section 4 to handle these situations.

5.1 Stabilization
The join algorithm in Section 4 aggressively maintains the finger

tables of all nodes as the network evolves. Since this invariant is
difficult to maintain in the face of concurrent joins in a large net-
work, we separate our correctness and performance goals. A basic
“stabilization” protocol is used to keep nodes’ successor pointers
up to date, which is sufficient to guarantee correctness of lookups.
Those successor pointers are then used to verify and correct fin-
ger table entries, which allows these lookups to be fast as well as
correct.

If joining nodes have affected some region of the Chord ring,
a lookup that occurs before stabilization has finished can exhibit
one of three behaviors. The common case is that all the finger ta-
ble entries involved in the lookup are reasonably current, and the
lookup finds the correct successor in

�����	��
 ��� steps. The second
case is where successor pointers are correct, but fingers are inaccu-
rate. This yields correct lookups, but they may be slower. In the
final case, the nodes in the affected region have incorrect successor
pointers, or keys may not yet have migrated to newly joined nodes,
and the lookup may fail. The higher-layer software using Chord
will notice that the desired data was not found, and has the option
of retrying the lookup after a pause. This pause can be short, since
stabilization fixes successor pointers quickly.

Our stabilization scheme guarantees to add nodes to a Chord ring
in a way that preserves reachability of existing nodes, even in the
face of concurrent joins and lost and reordered messages. Stabi-
lization by itself won’t correct a Chord system that has split into
multiple disjoint cycles, or a single cycle that loops multiple times
around the identifier space. These pathological cases cannot be
produced by any sequence of ordinary node joins. It is unclear
whether they can be produced by network partitions and recoveries
or intermittent failures. If produced, these cases could be detected
and repaired by periodic sampling of the ring topology.

Figure 7 shows the pseudo-code for joins and stabilization; this
code replaces Figure 6 to handle concurrent joins. When node �
first starts, it calls �	� join

� ��� � , where ��� is any known Chord node.
The �
� � � function asks � � to find the immediate successor of � . By
itself, �
� � � does not make the rest of the network aware of � .

Every node runs stabilize periodically (this is how newly joined
nodes are noticed by the network). When node � runs stabilize,
it asks � ’s successor for the successor’s predecessor � , and de-
cides whether � should be � ’s successor instead. This would be
the case if node � recently joined the system. stabilize also noti-
fies node � ’s successor of � ’s existence, giving the successor the
chance to change its predecessor to � . The successor does this only
if it knows of no closer predecessor than � .

As a simple example, suppose node � joins the system, and its
ID lies between nodes � � and � � . � would acquire � � as its succes-
sor. Node � � , when notified by � , would acquire � as its predeces-
sor. When � � next runs stabilize, it will ask � � for its predecessor
(which is now �); � � would then acquire � as its successor. Finally,
� � will notify � , and � will acquire � � as its predecessor. At this
point, all predecessor and successor pointers are correct.

�	� � ��.$� ��� � �
����� �����	��
�
��� � �#.�+ ;

�� ���	��
�
��� � � � � find successor ���� ;

// periodically verify n’s immediate successor,
// and tell the successor about n.
� .stabilize()� �
�� �	����
�
��� � �����������	��
�
��� ;

if � � ' �$� (
�� �	�	��
�
�����7�

�� �	�	��
�
��� � � ;

�� ���	��
�
��� � notify �$�#� ;
// � � thinks it might be our predecessor.
�	� �1� - . ��� ��� � �

if �	��
����������������
 is nil or � � ' � ��������������
�
��� (�#�7�
�����������	��
�
��� � � � ;

// periodically refresh finger table entries.
�	�
��
	�10 ������� �

� � random index �45 into finger 6 * ;
finger 6 ��*�� ������ � find successor � finger 6 �$*�� start � ;

Figure 7: Pseudocode for stabilization.

As soon as the successor pointers are correct, calls to
find predecessor (and thus find successor) will work. Newly joined
nodes that have not yet been fingered may cause find predecessor to
initially undershoot, but the loop in the lookup algorithm will nev-
ertheless follow successor (finger
 � �) pointers through the newly
joined nodes until the correct predecessor is reached. Eventually
fix fingers will adjust finger table entries, eliminating the need for
these linear scans.

The following theorems (proved in the technical report [21])
show that all problems caused by concurrent joins are transient.
The theorems assume that any two nodes trying to communicate
will eventually succeed.

THEOREM 4. Once a node can successfully resolve a given
query, it will always be able to do so in the future.

THEOREM 5. At some time after the last join all successor
pointers will be correct.

The proofs of these theorems rely on an invariant and a termina-
tion argument. The invariant states that once node � can reach node
� via successor pointers, it always can. To argue termination, we
consider the case where two nodes both think they have the same
successor � . In this case, each will attempt to notify � , and � will
eventually choose the closer of the two (or some other, closer node)
as its predecessor. At this point the farther of the two will, by con-
tacting � , learn of a better successor than � . It follows that every
node progresses towards a better and better successor over time.
This progress must eventually halt in a state where every node is
considered the successor of exactly one other node; this defines a
cycle (or set of them, but the invariant ensures that there will be at
most one).

We have not discussed the adjustment of fingers when nodes join
because it turns out that joins don’t substantially damage the per-
formance of fingers. If a node has a finger into each interval, then
these fingers can still be used even after joins. The distance halving
argument is essentially unchanged, showing that

����� ��
 ��� hops
suffice to reach a node “close” to a query’s target. New joins in-
fluence the lookup only by getting in between the old predecessor
and successor of a target query. These new nodes may need to be
scanned linearly (if their fingers are not yet accurate). But unless a

7

tremendous number of nodes joins the system, the number of nodes
between two old nodes is likely to be very small, so the impact on
lookup is negligible. Formally, we can state the following:

THEOREM 6. If we take a stable network with � nodes, and
another set of up to � nodes joins the network with no finger point-
ers (but with correct successor pointers), then lookups will still take�����	��
 ��� time with high probability.

More generally, so long as the time it takes to adjust fingers is
less than the time it takes the network to double in size, lookups
should continue to take

�����	��
 ��� hops.

5.2 Failures and Replication
When a node � fails, nodes whose finger tables include � must

find � ’s successor. In addition, the failure of � must not be allowed
to disrupt queries that are in progress as the system is re-stabilizing.

The key step in failure recovery is maintaining correct succes-
sor pointers, since in the worst case find predecessor can make
progress using only successors. To help achieve this, each Chord
node maintains a “successor-list” of its � nearest successors on the
Chord ring. In ordinary operation, a modified version of the stabi-
lize routine in Figure 7 maintains the successor-list. If node � no-
tices that its successor has failed, it replaces it with the first live en-
try in its successor list. At that point, � can direct ordinary lookups
for keys for which the failed node was the successor to the new
successor. As time passes, stabilize will correct finger table entries
and successor-list entries pointing to the failed node.

After a node failure, but before stabilization has completed, other
nodes may attempt to send requests through the failed node as part
of a find successor lookup. Ideally the lookups would be able to
proceed, after a timeout, by another path despite the failure. In
many cases this is possible. All that is needed is a list of alternate
nodes, easily found in the finger table entries preceding that of the
failed node. If the failed node had a very low finger table index,
nodes in the successor-list are also available as alternates.

The technical report proves the following two theorems that
show that the successor-list allows lookups to succeed, and be effi-
cient, even during stabilization [21]:

THEOREM 7. If we use a successor list of length � � �����	��
 ���
in a network that is initially stable, and then every node fails with
probability 1/2, then with high probability find successor returns
the closest living successor to the query key.

THEOREM 8. If we use a successor list of length � � �����	��
 ���
in a network that is initially stable, and then every node fails with
probability 1/2, then the expected time to execute find successor in
the failed network is

�����	��
 ��� .

The intuition behind these proofs is straightforward: a node’s �
successors all fail with probability �

� � � ��� � , so with high prob-
ability a node will be aware of, so able to forward messages to, its
closest living successor.

The successor-list mechanism also helps higher layer software
replicate data. A typical application using Chord might store repli-
cas of the data associated with a key at the � nodes succeeding the
key. The fact that a Chord node keeps track of its � successors
means that it can inform the higher layer software when successors
come and go, and thus when the software should propagate new
replicas.

0

50

100

150

200

250

300

350

400

450

500

1 10

N
um

be
r

of
 k

ey
s

pe
r

no
de

Number of virtual nodes

1st and 99th percentiles

Figure 9: The 1st and the 99th percentiles of the number of
keys per node as a function of virtual nodes mapped to a real
node. The network has

� �
�

real nodes and stores
� �
�

keys.

6. Simulation and Experimental Results
In this section, we evaluate the Chord protocol by simulation.

The simulator uses the lookup algorithm in Figure 4 and a slightly
older version of the stabilization algorithms described in Section 5.
We also report on some preliminary experimental results from an
operational Chord-based system running on Internet hosts.

6.1 Protocol Simulator
The Chord protocol can be implemented in an iterative or recur-

sive style. In the iterative style, a node resolving a lookup initiates
all communication: it asks a series of nodes for information from
their finger tables, each time moving closer on the Chord ring to the
desired successor. In the recursive style, each intermediate node
forwards a request to the next node until it reaches the successor.
The simulator implements the protocols in an iterative style.

6.2 Load Balance
We first consider the ability of consistent hashing to allocate keys

to nodes evenly. In a network with � nodes and � keys we would
like the distribution of keys to nodes to be tight around � � � .

We consider a network consisting of
� �
�

nodes, and vary the
total number of keys from

� �
�

to
� �
�

in increments of
� �
�
. For

each value, we repeat the experiment 20 times. Figure 8(a) plots
the mean and the 1st and 99th percentiles of the number of keys per
node. The number of keys per node exhibits large variations that
increase linearly with the number of keys. For example, in all cases
some nodes store no keys. To clarify this, Figure 8(b) plots the
probability density function (PDF) of the number of keys per node
when there are

��� � � � keys stored in the network. The maximum
number of nodes stored by any node in this case is 457, or

� � � � the
mean value. For comparison, the 99th percentile is � � � � the mean
value.

One reason for these variations is that node identifiers do not uni-
formly cover the entire identifier space. If we divide the identifier
space in � equal-sized bins, where � is the number of nodes, then
we might hope to see one node in each bin. But in fact, the proba-
bility that a particular bin does not contain any node is

��� ��� ���
	 .
For large values of � this approaches �

�
� � � � � ��� .

As we discussed earlier, the consistent hashing paper solves this
problem by associating keys with virtual nodes, and mapping mul-
tiple virtual nodes (with unrelated identifiers) to each real node.
Intuitively, this will provide a more uniform coverage of the iden-
tifier space. For example, if we allocate

�	��
 � randomly chosen
virtual nodes to each real node, with high probability each of the

8

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

N
um

be
r

of
 k

ey
s

pe
r

no
de

Total number of keys (x 10,000)

1st and 99th percentiles

(a)

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350 400 450 500

P
D

F

Number of keys per node

(b)

Figure 8: (a) The mean and 1st and 99th percentiles of the number of keys stored per node in a
� �
�

node network. (b) The probability
density function (PDF) of the number of keys per node. The total number of keys is

� � � � � .

� bins will contain
��� � ��
 ��� nodes [16]. We note that this does

not affect the worst-case query path length, which now becomes�����	��
 � � �	��
 ��� � � �����	��
 ��� .
To verify this hypothesis, we perform an experiment in which

we allocate � virtual nodes to each real node. In this case keys
are associated to virtual nodes instead of real nodes. We consider
again a network with

� �
�

real nodes and
� �
�

keys. Figure 9 shows
the 1st and 99th percentiles for � � � � � � � � � � , and 20, respec-
tively. As expected, the 99th percentile decreases, while the 1st
percentile increases with the number of virtual nodes, � . In par-
ticular, the 99th percentile decreases from � � � � to

� � � � the mean
value, while the 1st percentile increases from 0 to � � � � the mean
value. Thus, adding virtual nodes as an indirection layer can sig-
nificantly improve load balance. The tradeoff is that routing table
space usage will increase as each actual node now needs � times as
much space to store the finger tables for its virtual nodes. However,
we believe that this increase can be easily accommodated in prac-
tice. For example, assuming a network with � � � �

�
nodes, and

assuming � � �	��
 � , each node has to maintain a table with only�	��
�� � � � �
� entries.

6.3 Path Length
The performance of any routing protocol depends heavily on the

length of the path between two arbitrary nodes in the network.
In the context of Chord, we define the path length as the number
of nodes traversed during a lookup operation. From Theorem 2,
with high probability, the length of the path to resolve a query is�����	��
 ��� , where � is the total number of nodes in the network.

To understand Chord’s routing performance in practice, we sim-
ulated a network with � � ��� nodes, storing

� �
� � ��� keys in
all. We varied � from

�
to
� � and conducted a separate experiment

for each value. Each node in an experiment picked a random set
of keys to query from the system, and we measured the path length
required to resolve each query.

Figure 10(a) plots the mean, and the 1st and 99th percentiles of
path length as a function of � . As expected, the mean path length
increases logarithmically with the number of nodes, as do the 1st
and 99th percentiles. Figure 10(b) plots the PDF of the path length
for a network with � � � nodes (� � � �).

Figure 10(a) shows that the path length is about �� � ��
 � � . The
reason for the �� is as follows. Consider some random node and
a random query. Let the distance in identifier space be considered
in binary representation. The most significant (say

� ���
) bit of this

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2

F
ai

le
d

Lo
ok

up
s

(F
ra

ct
io

n
of

 T
ot

al
)

Failed Nodes (Fraction of Total)

95% confidence interval

Figure 11: The fraction of lookups that fail as a function of the
fraction of nodes that fail.

distance can be corrected to 0 by following the node’s
� ���

finger.
If the next significant bit of the distance is 1, it too needs to be
corrected by following a finger, but if it is 0, then no

� � � � finger
is followed—instead, we move on the the

� � � �
bit. In general, the

number of fingers we need to follow will be the number of ones in
the binary representation of the distance from node to query. Since
the distance is random, we expect half the

�	��
 � bits to be ones.

6.4 Simultaneous Node Failures
In this experiment, we evaluate the ability of Chord to regain

consistency after a large percentage of nodes fail simultaneously.
We consider again a

� �
�

node network that stores
� �
�

keys, and
randomly select a fraction � of nodes that fail. After the failures
occur, we wait for the network to finish stabilizing, and then mea-
sure the fraction of keys that could not be looked up correctly. A
correct lookup of a key is one that finds the node that was origi-
nally responsible for the key, before the failures; this corresponds
to a system that stores values with keys but does not replicate the
values or recover them after failures.

Figure 11 plots the mean lookup failure rate and the 95% confi-
dence interval as a function of � . The lookup failure rate is almost
exactly � . Since this is just the fraction of keys expected to be lost
due to the failure of the responsible nodes, we conclude that there
is no significant lookup failure in the Chord network. For example,
if the Chord network had partitioned in two equal-sized halves, we

9

0

2

4

6

8

10

12

1 10 100 1000 10000 100000

P
at

h
le

ng
th

Number of nodes

1st and 99th percentiles

(a)

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

P
D

F

Path length

(b)

Figure 10: (a) The path length as a function of network size. (b) The PDF of the path length in the case of a � � � node network.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.02 0.04 0.06 0.08 0.1

F
ai

le
d

Lo
ok

up
s

(F
ra

ct
io

n
of

 T
ot

al
)

Node Fail/Join Rate (Per Second)

95% confidence interval

Figure 12: The fraction of lookups that fail as a function of
the rate (over time) at which nodes fail and join. Only failures
caused by Chord state inconsistency are included, not failures
due to lost keys.

would expect one-half of the requests to fail because the querier
and target would be in different partitions half the time. Our re-
sults do not show this, suggesting that Chord is robust in the face
of multiple simultaneous node failures.

6.5 Lookups During Stabilization
A lookup issued after some failures but before stabilization has

completed may fail for two reasons. First, the node responsible for
the key may have failed. Second, some nodes’ finger tables and
predecessor pointers may be inconsistent due to concurrent joins
and node failures. This section evaluates the impact of continuous
joins and failures on lookups.

In this experiment, a lookup is considered to have succeeded if
it reaches the current successor of the desired key. This is slightly
optimistic: in a real system, there might be periods of time in which
the real successor of a key has not yet acquired the data associated
with the key from the previous successor. However, this method al-
lows us to focus on Chord’s ability to perform lookups, rather than
on the higher-layer software’s ability to maintain consistency of its
own data. Any query failure will be the result of inconsistencies in
Chord. In addition, the simulator does not retry queries: if a query
is forwarded to a node that is down, the query simply fails. Thus,
the results given in this section can be viewed as the worst-case
scenario for the query failures induced by state inconsistency.

Because the primary source of inconsistencies is nodes joining
and leaving, and because the main mechanism to resolve these in-
consistencies is the stabilize protocol, Chord’s performance will be
sensitive to the frequency of node joins and leaves versus the fre-
quency at which the stabilization protocol is invoked.

In this experiment, key lookups are generated according to a
Poisson process at a rate of one per second. Joins and failures
are modeled by a Poisson process with the mean arrival rate of

�
.

Each node runs the stabilization routines at randomized intervals
averaging 30 seconds; unlike the routines in Figure 7, the simulator
updates all finger table entries on every invocation. The network
starts with 500 nodes.

Figure 12 plots the average failure rates and confidence intervals.
A node failure rate of � � � � corresponds to one node joining and
leaving every 100 seconds on average. For comparison, recall that
each node invokes the stabilize protocol once every 30 seconds.
In other words, the graph � axis ranges from a rate of 1 failure
per 3 stabilization steps to a rate of 3 failures per one stabilization
step. The results presented in Figure 12 are averaged over approx-
imately two hours of simulated time. The confidence intervals are
computed over 10 independent runs.

The results of figure 12 can be explained roughly as follows. The
simulation has 500 nodes, meaning lookup path lengths average
around

�
. A lookup fails if its finger path encounters a failed node.

If � nodes fail, the probability that one of them is on the finger path
is roughly

� � � � ��� , or � � � ��� . This would suggest a failure rate of
about

�
% if we have 3 failures between stabilizations. The graph

shows results in this ball-park, but slightly worse since it might take
more than one stabilization to completely clear out a failed node.

6.6 Experimental Results
This section presents latency measurements obtained from a pro-

totype implementation of Chord deployed on the Internet. The
Chord nodes are at ten sites on a subset of the RON test-bed
in the United States [1], in California, Colorado, Massachusetts,
New York, North Carolina, and Pennsylvania. The Chord software
runs on UNIX, uses 160-bit keys obtained from the SHA-1 cryp-
tographic hash function, and uses TCP to communicate between
nodes. Chord runs in the iterative style. These Chord nodes are
part of an experimental distributed file system [7], though this sec-
tion considers only the Chord component of the system.

Figure 13 shows the measured latency of Chord lookups over a
range of numbers of nodes. Experiments with a number of nodes
larger than ten are conducted by running multiple independent

10

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140 160 180 200

Lo
ok

up
 L

at
en

cy
 (

m
s)

Number of Nodes

5th, 50th, and 95th percentiles

Figure 13: Lookup latency on the Internet prototype, as a func-
tion of the total number of nodes. Each of the ten physical sites
runs multiple independent copies of the Chord node software.

copies of the Chord software at each site. This is different from
running

�����	��
 ��� virtual nodes at each site to provide good load
balance; rather, the intention is to measure how well our implemen-
tation scales even though we do not have more than a small number
of deployed nodes.

For each number of nodes shown in Figure 13, each physical
site issues 16 Chord lookups for randomly chosen keys one-by-
one. The graph plots the median, the 5th, and the 95th percentile
of lookup latency. The median latency ranges from 180 to 285 ms,
depending on number of nodes. For the case of 180 nodes, a typi-
cal lookup involves five two-way message exchanges: four for the
Chord lookup, and a final message to the successor node. Typical
round-trip delays between sites are 60 milliseconds (as measured
by ping). Thus the expected lookup time for 180 nodes is about
300 milliseconds, which is close to the measured median of 285.
The low 5th percentile latencies are caused by lookups for keys
close (in ID space) to the querying node and by query hops that re-
main local to the physical site. The high 95th percentiles are caused
by lookups whose hops follow high delay paths.

The lesson from Figure 13 is that lookup latency grows slowly
with the total number of nodes, confirming the simulation results
that demonstrate Chord’s scalability.

7. Future Work
Based on our experience with the prototype mentioned in Sec-

tion 6.6, we would like to improve the Chord design in the follow-
ing areas.

Chord currently has no specific mechanism to heal partitioned
rings; such rings could appear locally consistent to the stabilization
procedure. One way to check global consistency is for each node
� to periodically ask other nodes to do a Chord lookup for � ; if
the lookup does not yield node � , there may be a partition. This
will only detect partitions whose nodes know of each other. One
way to obtain this knowledge is for every node to know of the same
small set of initial nodes. Another approach might be for nodes
to maintain long-term memory of a random set of nodes they have
encountered in the past; if a partition forms, the random sets in one
partition are likely to include nodes from the other partition.

A malicious or buggy set of Chord participants could present an
incorrect view of the Chord ring. Assuming that the data Chord
is being used to locate is cryptographically authenticated, this is a
threat to availability of data rather than to authenticity. The same
approach used above to detect partitions could help victims realize

that they are not seeing a globally consistent view of the Chord
ring.

An attacker could target a particular data item by inserting a node
into the Chord ring with an ID immediately following the item’s
key, and having the node return errors when asked to retrieve the
data. Requiring (and checking) that nodes use IDs derived from the
SHA-1 hash of their IP addresses makes this attack harder.

Even
�	��
 � messages per lookup may be too many for some

applications of Chord, especially if each message must be sent to
a random Internet host. Instead of placing its fingers at distances
that are all powers of � , Chord could easily be changed to place its
fingers at distances that are all integer powers of

� � ��� �
. Under

such a scheme, a single routing hop could decrease the distance to a
query to

��� ��� � � � of the original distance, meaning that
�	��

�
� � �

hops would suffice. However, the number of fingers needed would
increase to

�	��
 � � ���	��
 ��� � ��� � ��� ��� � �	��
 ��� .
A different approach to improving lookup latency might be to

use server selection. Each finger table entry could point to the first
� nodes in that entry’s interval on the ID ring, and a node could
measure the network delay to each of the � nodes. The � nodes
are generally equivalent for purposes of lookup, so a node could
forward lookups to the one with lowest delay. This approach would
be most effective with recursive Chord lookups, in which the node
measuring the delays is also the node forwarding the lookup.

8. Conclusion
Many distributed peer-to-peer applications need to determine

the node that stores a data item. The Chord protocol solves this
challenging problem in decentralized manner. It offers a power-
ful primitive: given a key, it determines the node responsible for
storing the key’s value, and does so efficiently. In the steady state,
in an � -node network, each node maintains routing information
for only about

�����	��
 ��� other nodes, and resolves all lookups via�����	��
 �� messages to other nodes. Updates to the routing infor-
mation for nodes leaving and joining require only

�����	��
 � ��� mes-
sages.

Attractive features of Chord include its simplicity, provable cor-
rectness, and provable performance even in the face of concurrent
node arrivals and departures. It continues to function correctly, al-
beit at degraded performance, when a node’s information is only
partially correct. Our theoretical analysis, simulations, and exper-
imental results confirm that Chord scales well with the number of
nodes, recovers from large numbers of simultaneous node failures
and joins, and answers most lookups correctly even during recov-
ery.

We believe that Chord will be a valuable component for peer-
to-peer, large-scale distributed applications such as cooperative file
sharing, time-shared available storage systems, distributed indices
for document and service discovery, and large-scale distributed
computing platforms.

Acknowledgments
We thank Frank Dabek for the measurements of the Chord proto-
type described in Section 6.6, and David Andersen for setting up
the testbed used in those measurements.

9. References
[1] ANDERSEN, D. Resilient overlay networks. Master’s thesis,

Department of EECS, MIT, May 2001.
http://nms.lcs.mit.edu/projects/ron/.

[2] BAKKER, A., AMADE, E., BALLINTIJN, G., KUZ, I., VERKAIK,
P., VAN DER WIJK, I., VAN STEEN, M., AND TANENBAUM., A.

11

The Globe distribution network. In Proc. 2000 USENIX Annual Conf.
(FREENIX Track) (San Diego, CA, June 2000), pp. 141–152.

[3] CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI, S.,
AND YIANILOS, P. A prototype implementation of archival
intermemory. In Proceedings of the 4th ACM Conference on Digital
libraries (Berkeley, CA, Aug. 1999), pp. 28–37.

[4] CLARKE, I. A distributed decentralised information storage and
retrieval system. Master’s thesis, University of Edinburgh, 1999.

[5] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A distributed anonymous information storage and retrieval
system. In Proceedings of the ICSI Workshop on Design Issues in
Anonymity and Unobservability (Berkeley, California, June 2000).
http://freenet.sourceforge.net.

[6] DABEK, F., BRUNSKILL, E., KAASHOEK, M. F., KARGER, D.,
MORRIS, R., STOICA, I., AND BALAKRISHNAN, H. Building
peer-to-peer systems with Chord, a distributed location service. In
Proceedings of the 8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII) (Elmau/Oberbayern, Germany, May 2001),
pp. 71–76.

[7] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND
STOICA, I. Wide-area cooperative storage with CFS. In Proceedings
of the 18th ACM Symposium on Operating Systems Principles (SOSP
’01) (To appear; Banff, Canada, Oct. 2001).

[8] DRUSCHEL, P., AND ROWSTRON, A. Past: Persistent and
anonymous storage in a peer-to-peer networking environment. In
Proceedings of the 8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS 2001) (Elmau/Oberbayern, Germany, May 2001),
pp. 65–70.

[9] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/NIST, National Technical Information Service,
Springfield, VA, Apr. 1995.

[10] Gnutella. http://gnutella.wego.com/.
[11] KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M., LEWIN,

D., AND PANIGRAHY, R. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the World
Wide Web. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (El Paso, TX, May 1997), pp. 654–663.

[12] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMADI, R., RHEA, S.,
WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
OceanStore: An architecture for global-scale persistent storage. In
Proceeedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS 2000) (Boston, MA, November 2000), pp. 190–201.

[13] LEWIN, D. Consistent hashing and random trees: Algorithms for
caching in distributed networks. Master’s thesis, Department of
EECS, MIT, 1998. Available at the MIT Library,
http://thesis.mit.edu/.

[14] LI, J., JANNOTTI, J., DE COUTO, D., KARGER, D., AND MORRIS,
R. A scalable location service for geographic ad hoc routing. In
Proceedings of the 6th ACM International Conference on Mobile
Computing and Networking (Boston, Massachusetts, August 2000),
pp. 120–130.

[15] MOCKAPETRIS, P., AND DUNLAP, K. J. Development of the
Domain Name System. In Proc. ACM SIGCOMM (Stanford, CA,
1988), pp. 123–133.

[16] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms.
Cambridge University Press, New York, NY, 1995.

[17] Napster. http://www.napster.com/.
[18] Ohaha, Smart decentralized peer-to-peer sharing.

http://www.ohaha.com/design.html.
[19] PLAXTON, C., RAJARAMAN, R., AND RICHA, A. Accessing

nearby copies of replicated objects in a distributed environment. In
Proceedings of the ACM SPAA (Newport, Rhode Island, June 1997),
pp. 311–320.

[20] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SHENKER, S. A scalable content-addressable network. In Proc. ACM
SIGCOMM (San Diego, CA, August 2001).

[21] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. Tech. Rep. TR-819, MIT LCS, March 2001.
http://www.pdos.lcs.mit.edu/chord/papers/.

[22] VAN STEEN, M., HAUCK, F., BALLINTIJN, G., AND TANENBAUM,
A. Algorithmic design of the Globe wide-area location service. The
Computer Journal 41, 5 (1998), 297–310.

12

