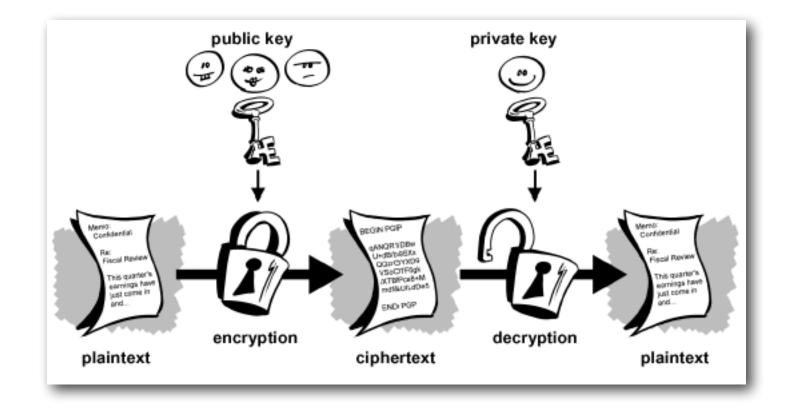
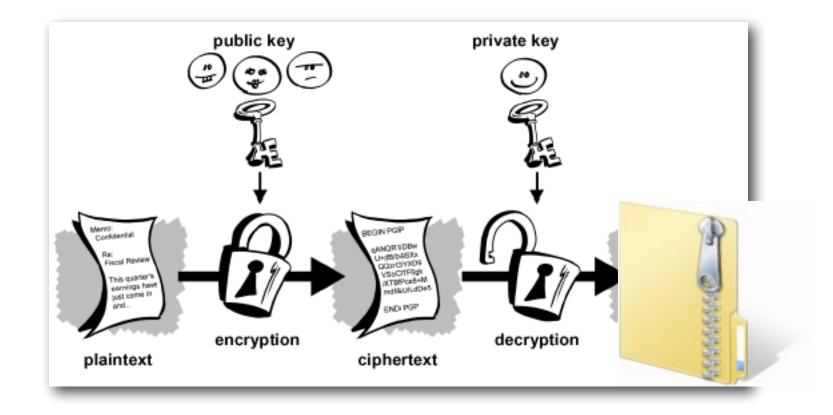
- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV

- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV

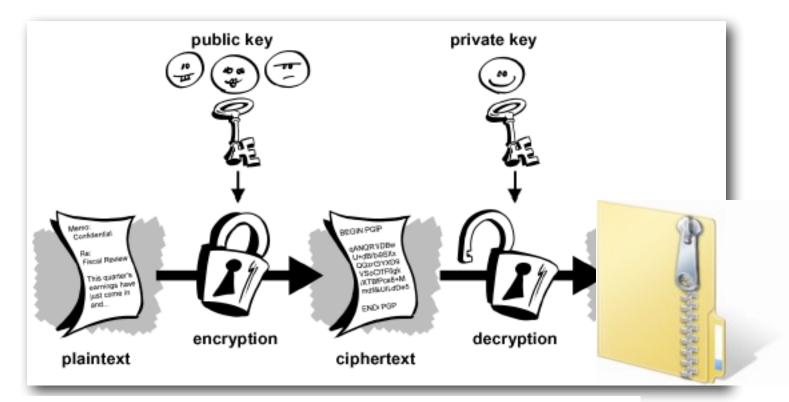


- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV



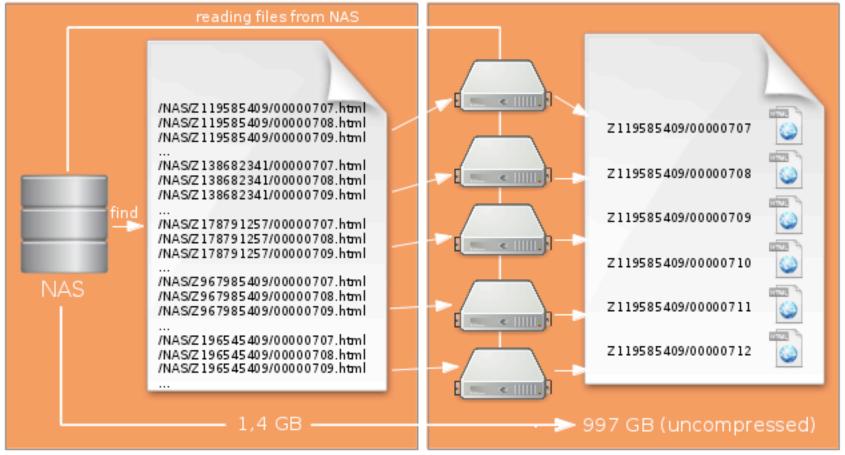
Get the data!

- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV

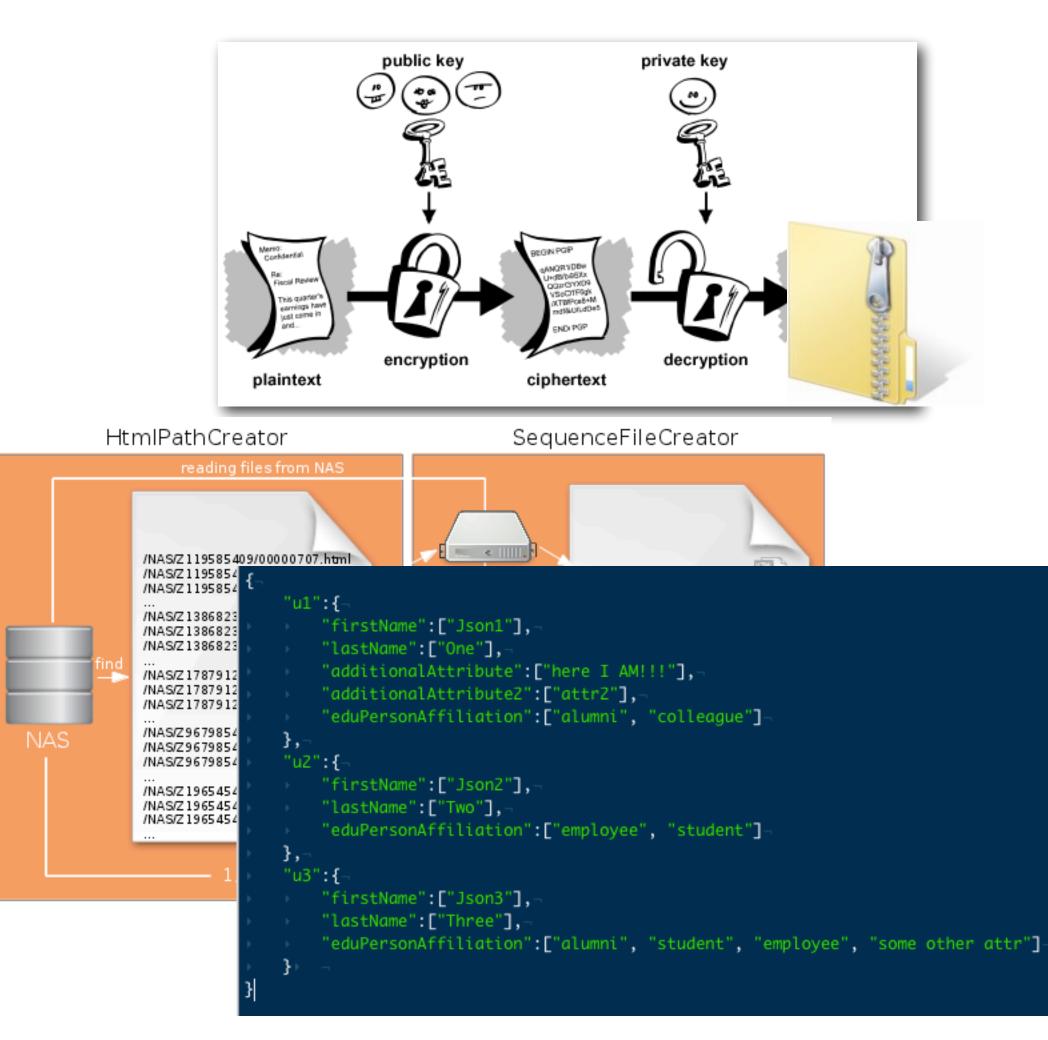


HtmlPathCreator

SequenceFileCreator

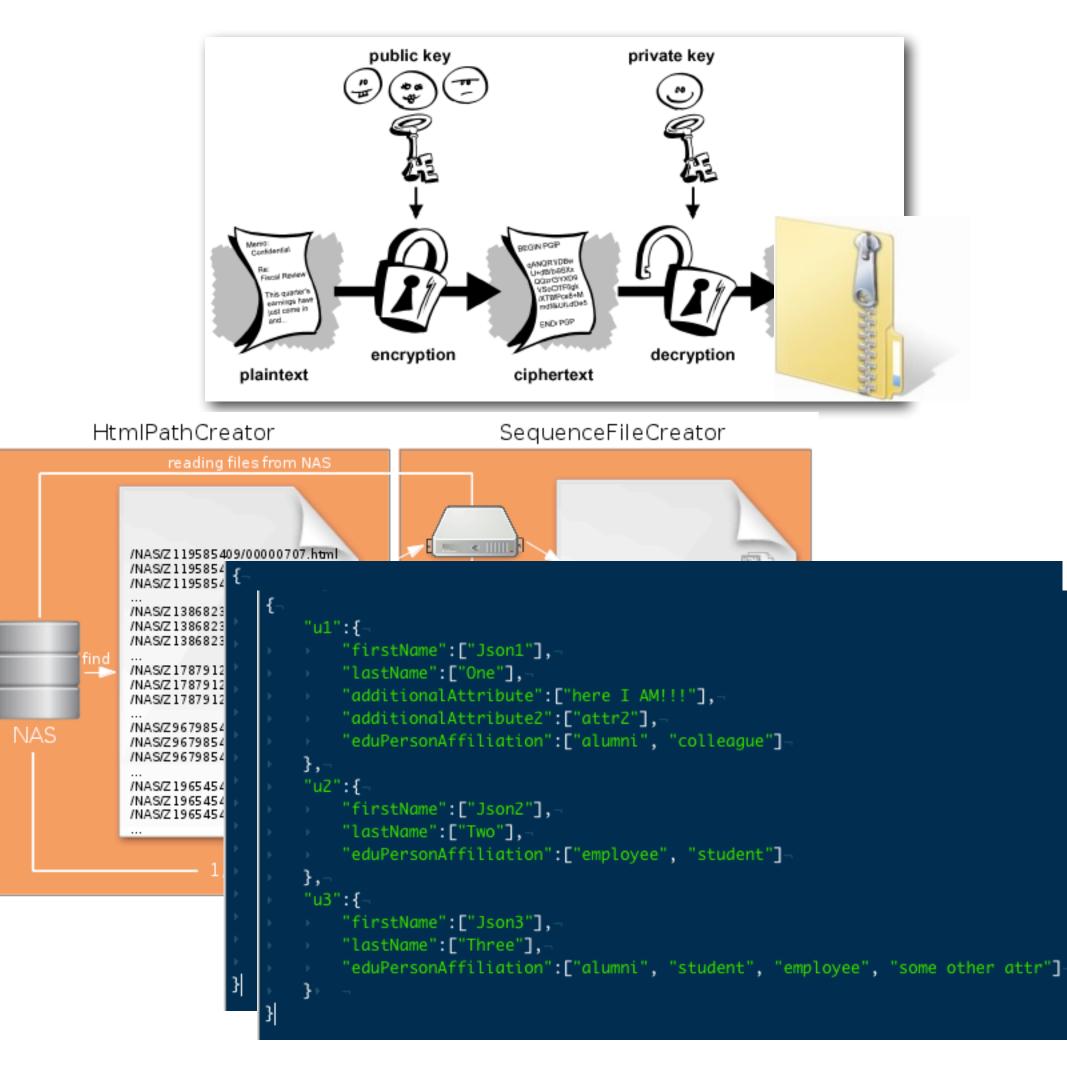


- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV

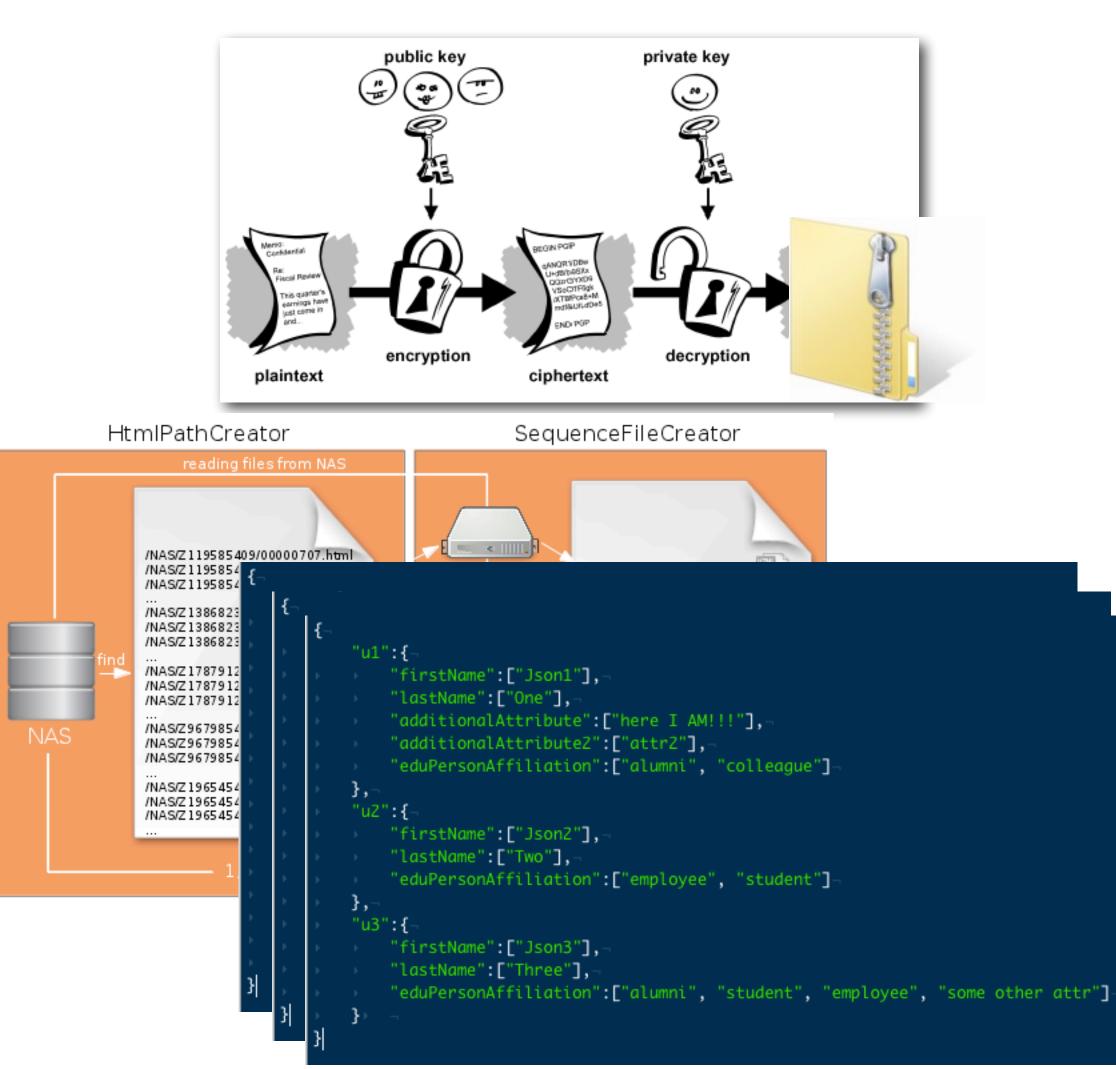


11

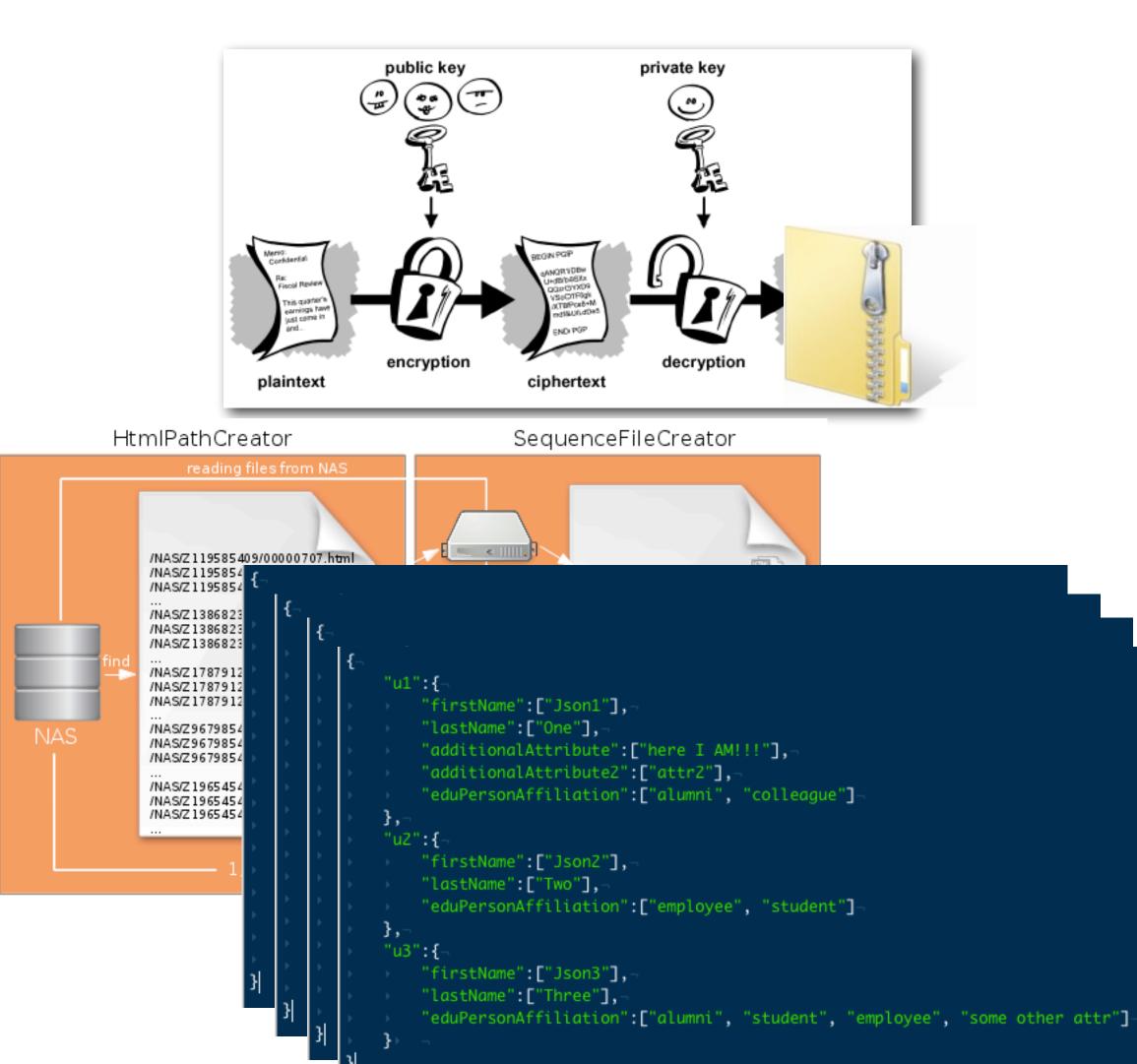
- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV



- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV



- Data sets are typically compressed in large batches of files.
- The files are:
 - Encrypted with gpg
 - Compressed .gz/.bz/.xz files
 - Hadoop sequence .sc files
 - Thrift/JSON/XML/CSV



- Split a textual document into sentences.
 - Was that an abbreviation?
 - Was that inside a quote?

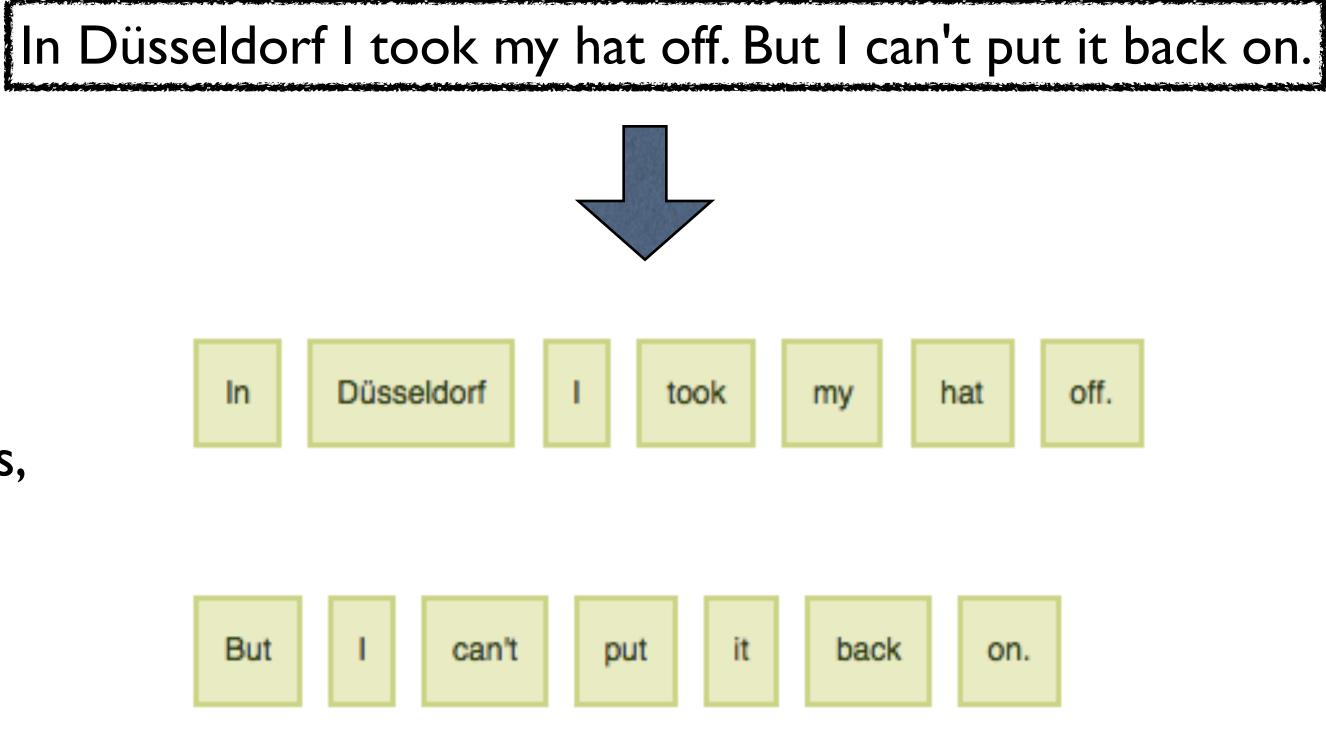
Sentence Segmentation

She stopped. She said, "Hello there," and then went on. He's vanished! What will we do? It's up to us. ^ Please add 1.5 liters to the tank.

sentence =
tokenize.sent tokenize(text)

Word Tokenization

- Split a sentence into tokens
 - text.split("") is not always enough
 - What about apostrophe, abbreviations, misspellings, URIs, different languages?



Part-of-Speech Tagging (POS)

Classifying word tokens into parts of speech

Part-of-Speech Tagging (POS)

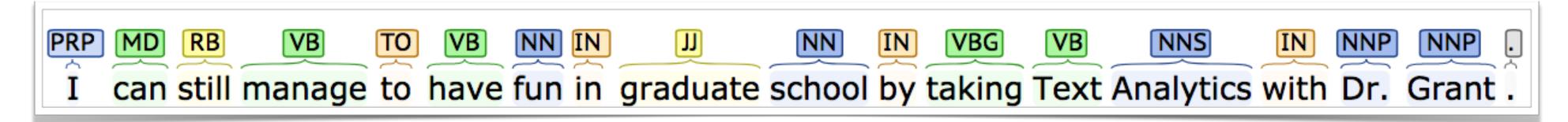
Classifying word tokens into parts of speech

The Penn Treebank POS tagset.

1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. JJS	Adjective, superlative	33. WDT	wh-determiner
10. ĽS	List item marker	34. WP	wh-pronoun
11. MD	Modal	35. WP\$	Possessive <i>wh-</i> pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. ″	Straight double quote
21. RBR	Adverb, comparative	45. <i>'</i>	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47. ′	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. ″	Right close double quote
· · · · · · · · · · · · · · · · · · ·			

Part-of-Speech Tagging (POS)

Classifying word tokens into parts of speech



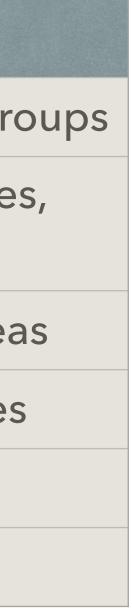
The Penn Treebank POS tagset.

1 00		25 TO	
1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. JJS	Adjective, superlative	33. WDT	wh-determiner
10. LS	List item marker	34. WP	wh-pronoun
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. <i>''</i>	Straight double quote
21. RBR	Adverb, comparative	45. <i>'</i>	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47. ′	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. "	Right close double quote

Identify the tokens in a sentence that correspond to a Entity.

Named Entity Recognition (NER)

Туре	Tag	Sample Categories
People	PER	Individuals, fictional characters, small gro
Organization	ORG	Companies, agencies, political partie religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes sea
Geo-Political	GPE	Countries states, provinces, counties
Facility	FAC	Bridges, buildings, airports
Vehicles	VEH	Planes, trains, and automobiles

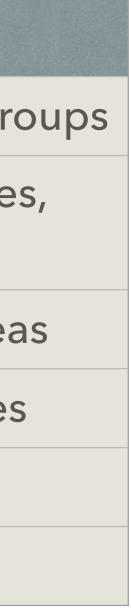


Identify the tokens in a sentence that correspond to a Entity.

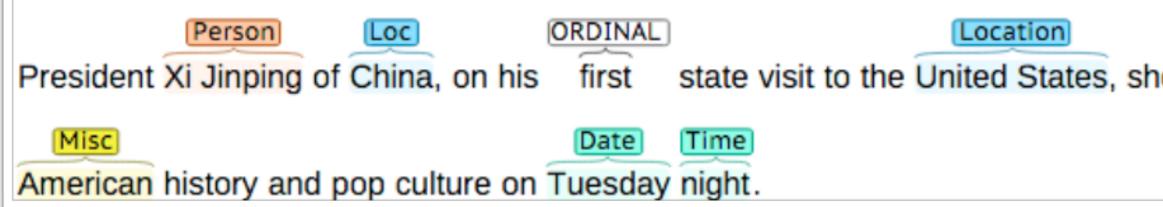
> PERSON I can still manage to have fun in graduate school by taking Text Analytics with Dr. Grant .

Named Entity Recognition (NER)

Туре	Tag	Sample Categories
People	PER	Individuals, fictional characters, small gro
Organization	ORG	Companies, agencies, political partie religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes sea
Geo-Political	GPE	Countries states, provinces, counties
Facility	FAC	Bridges, buildings, airports
Vehicles	VEH	Planes, trains, and automobiles



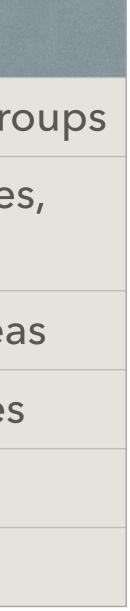
Identify the tokens in a sentence that correspond to a Entity.



PERSON I can still manage to have fun in graduate school by taking Text Analytics with Dr. Grant .

Named Entity Recognition (NER)

Туре	Tag	Sample Categories
People	PER	Individuals, fictional characters, small gro
Organization	ORG	Companies, agencies, political partie religious groups, sports teams
Location	LOC	Physical extents, mountains, lakes sea
Gaa Dalitical		Countries states, provinces, counties
howed off his familiarity with		Bridges, buildings, airports
		Planes, trains, and automobiles



 Identify sequences of non-overlapping labels

Identify sequences of non-overlapping labels

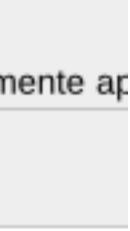
Chunking

ORG

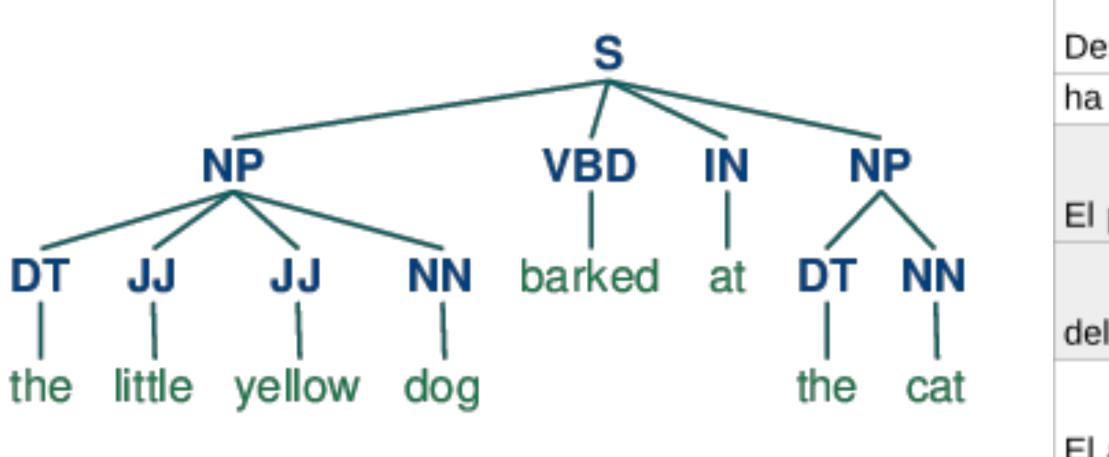
Destacados representantes del Parlamento y la prensa rusos criticaron hoy el "belicism ha definido como posible blanco de su lucha antiterrorista.

ORG	PER
presidente de la Duma (cámara baja),	Guennadi Selezniov, calificó de "claran
I Kremlin para Chechenia, Serguéi Yas	R
raomin para onconoma, oorgaor rae	

LOC



Identify sequences of non-overlapping labels

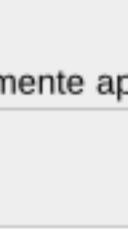


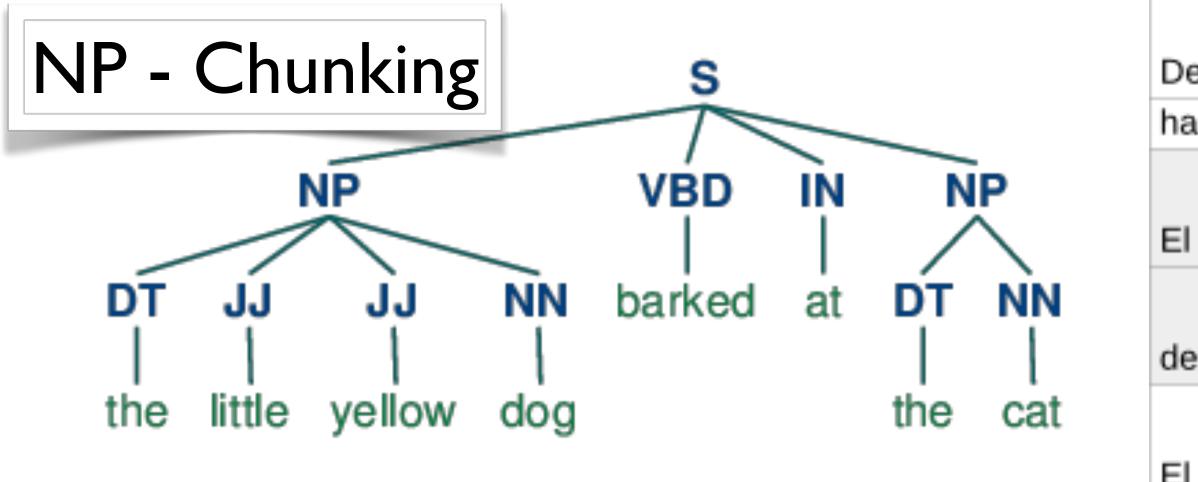
ORG

Destacados representantes del Parlamento y la prensa rusos criticaron hoy el "belicism ha definido como posible blanco de su lucha antiterrorista.

ORG	PER
presidente de la Duma (cámara baja),	Guennadi Selezniov, calificó de "claran
I Kremlin para Chechenia, Serguéi Yas	R
raomin para onconoma, oorgaor rae	

LOC



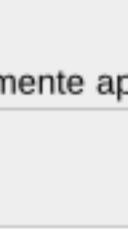


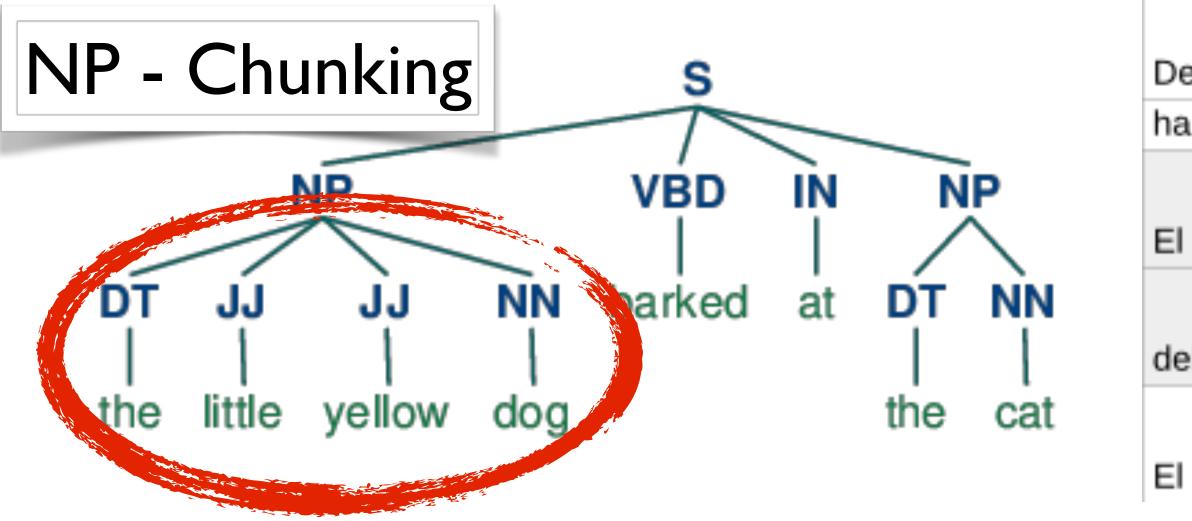
ORG

Destacados representantes del Parlamento y la prensa rusos criticaron hoy el "belicism ha definido como posible blanco de su lucha antiterrorista.

ORG	PER
presidente de la Duma (cámara baja),	Guennadi Selezniov, calificó de "claran
I Kremlin para Chechenia, Serguéi Yas	R
raomin para onconoma, oorgaor rae	

LOC



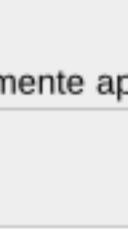


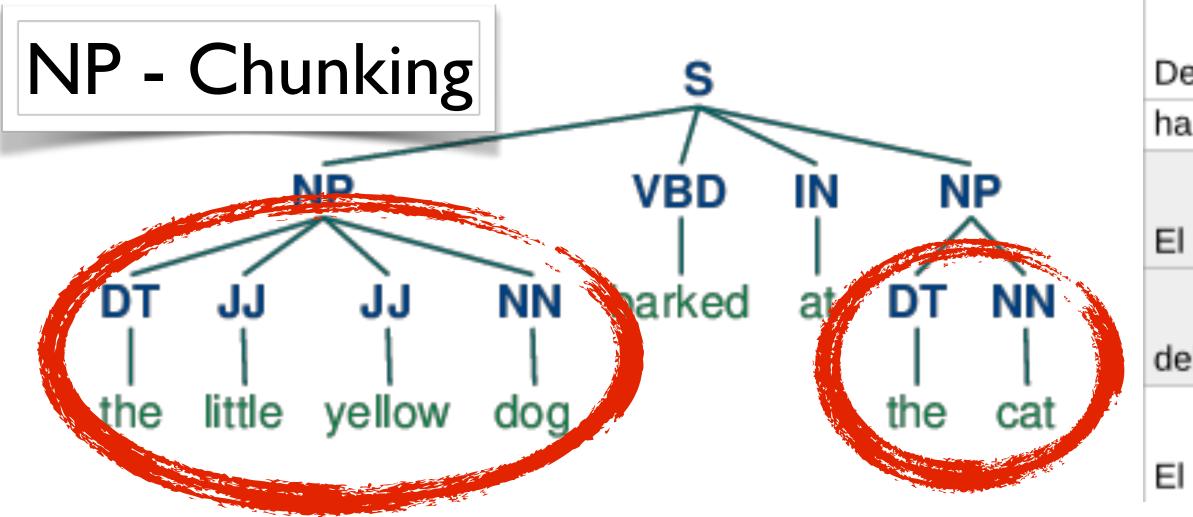
ORG

Destacados representantes del Parlamento y la prensa rusos criticaron hoy el "belicism ha definido como posible blanco de su lucha antiterrorista.

ORG	PER
presidente de la Duma (cámara baja),	Guennadi Selezniov, calificó de "claran
I Kremlin para Chechenia, Serguéi Yas	R
raomin para onconoma, oorgaor rae	

LOC



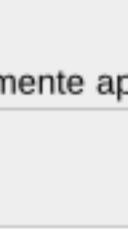


ORG

Destacados representantes del Parlamento y la prensa rusos criticaron hoy el "belicism ha definido como posible blanco de su lucha antiterrorista.

ORG	PER
presidente de la Duma (cámara baja),	Guennadi Selezniov, calificó de "claran
I Kremlin para Chechenia, Serguéi Yas	R
raomin para onconoma, oorgaor rae	

LOC



- Every token is In a chunk or Out of a chunk.
- Distinguish the Beginnings of chunks.

We	s a w	t h e	y e l l o w	d o g
PRP	VBD	DT	JJ	NN
B-NP	0	B-NP	I-NP	I-NP

MADden

MA MADden: Query-Driv Statistical Text Anal

Give me Query 1	5 +	*	sentiment comm	ents about	Revis
Compare players	tebow	and	revis	by the twi	tter se
10/22/201 to 10	0/27/201 and ret	turn	0	5 results.	Quer

Return all the named entity tags from the text

Kirn began his career in psychology, graduating from UF with a master's clinical psychology in 1971 and a doctorate in the same subject in 1974. met his wife, Katrine, who also earned her doctorate in clinical psycholog

Query 4

Dder	
ven ytics	
S	
entiment over dates from	
degree in While at UF, he gy at UF. He	

MADde	Answer	
Statisti	0	Kirn
JUCIUSU	32	UF
	39	Katrine
	79	Kentucky
Give me Query 1	94	Bellarmine
	94	University
Compare pla	96	Louisville
10/22/201		
	Query Plan	
Return all the Kirn began I	<pre>Function Scan on cgrant_ne_chunk (cos Filter: (tag = 'NE'::text)</pre>	
clinical psyc met his wife Query 4		

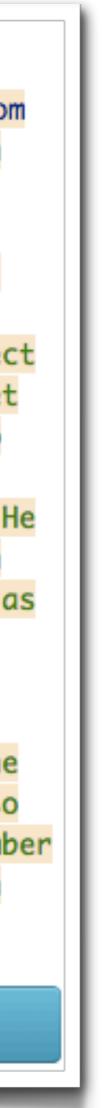
MADden

=0.25..12.75 rows=5 width=36)

The Query

-- select termnum, term from cgrant_ne_chunk('Kirn began his career in psychology, graduating from UF with a master's degree in clinical psychology in 1971 and a doctorate in the same subject in 1974. While at UF, he met his wife, Katrine, who also earned her doctorate in clinical psychology at UF. He worked in the mental health field for six years, first as an intern and later at community mental health centers and in a private practice in Kentucky that he owned with his wife. He also was a full-time faculty member at Bellarmine University in Louisville for six years', true) where tag = 'NE' ;

4.6008198261261 sec

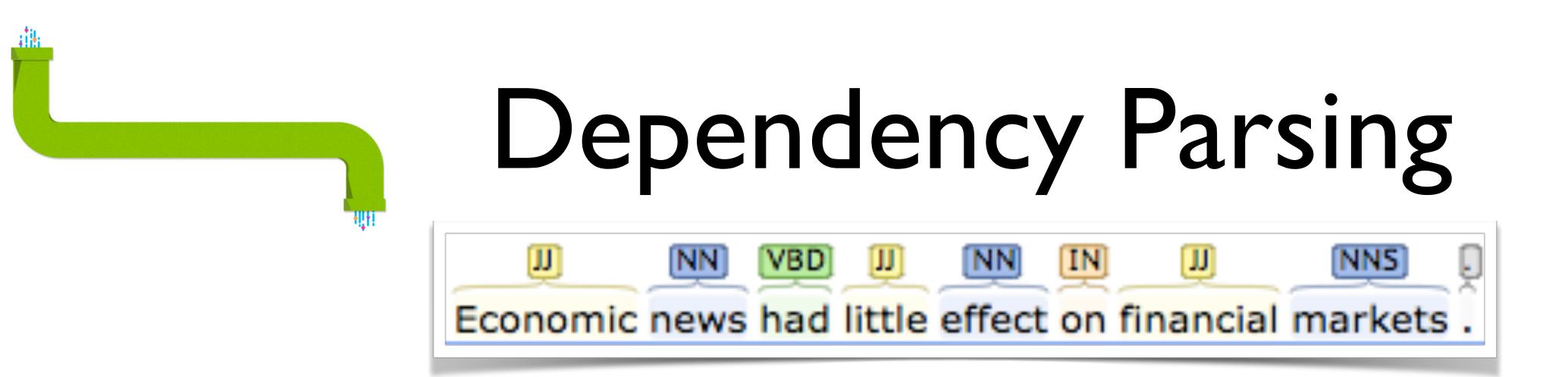


Dependency Parsing

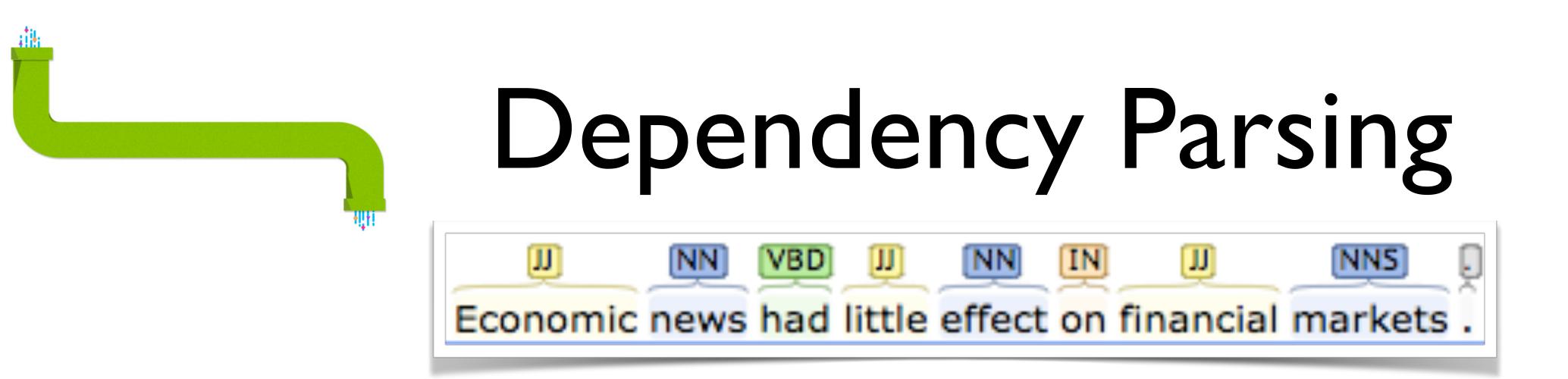
- A graph depicting the relationship between a word (head) and its dependents.
 - Starts with a verb and finds the related subject and object.
 - Useful in understanding phrases
 - Similar to chunking
 - Very close to semantic relationships
 - Link grammar is the most notable implementation (in AbiWord)

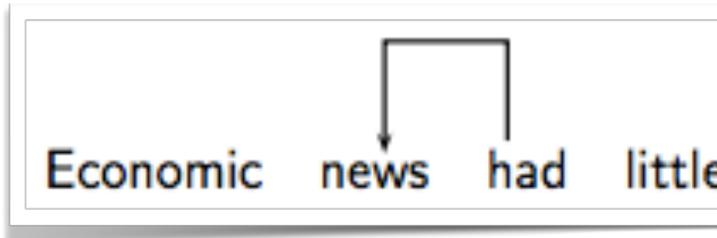
Dependency Parsing

Economic news had little effect on financial markets

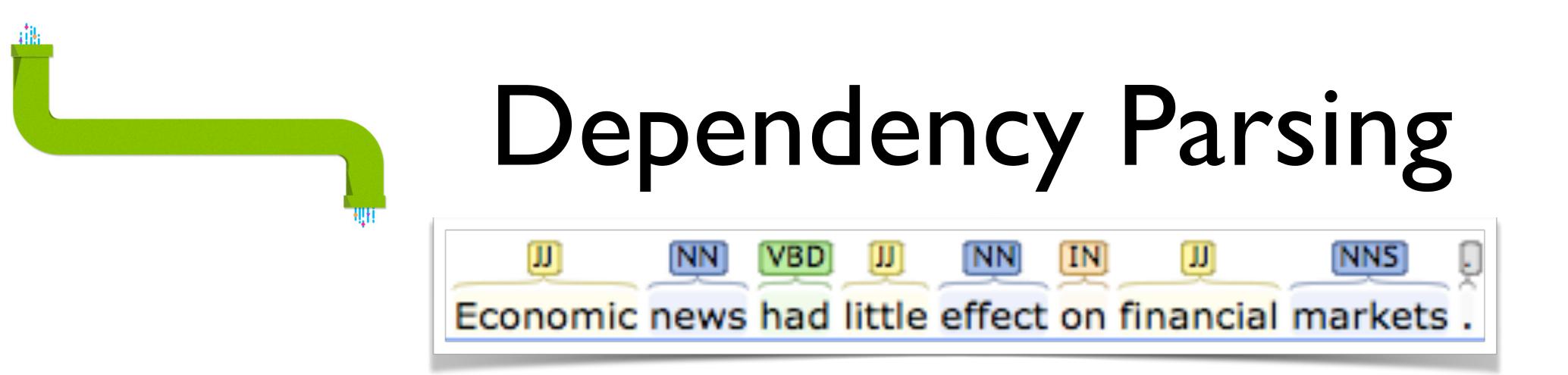


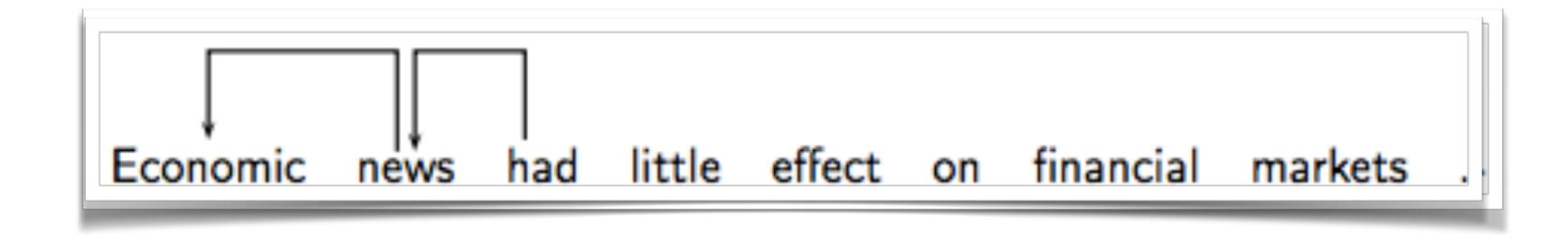
Economic news had little effect on financial markets

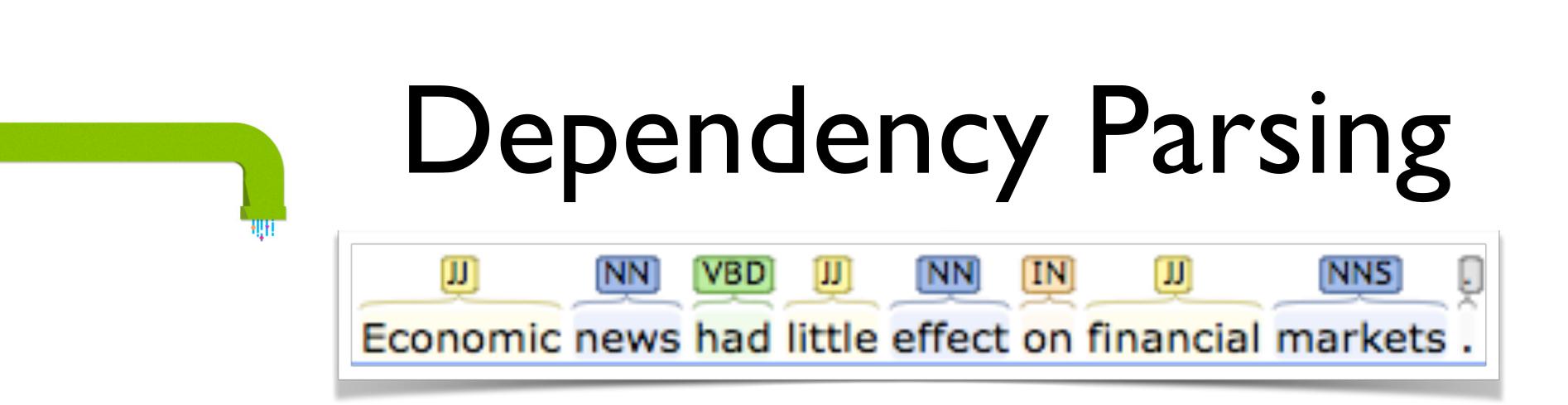


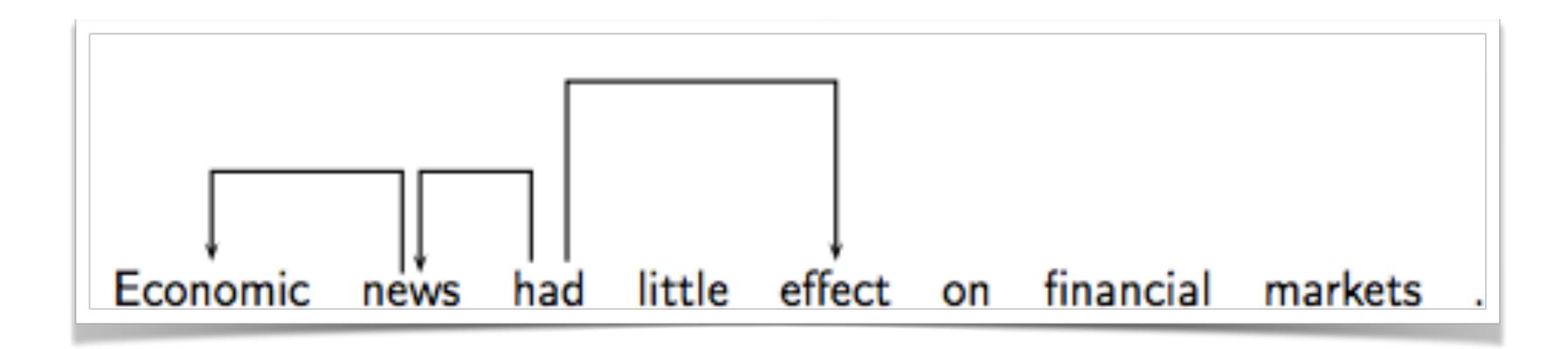


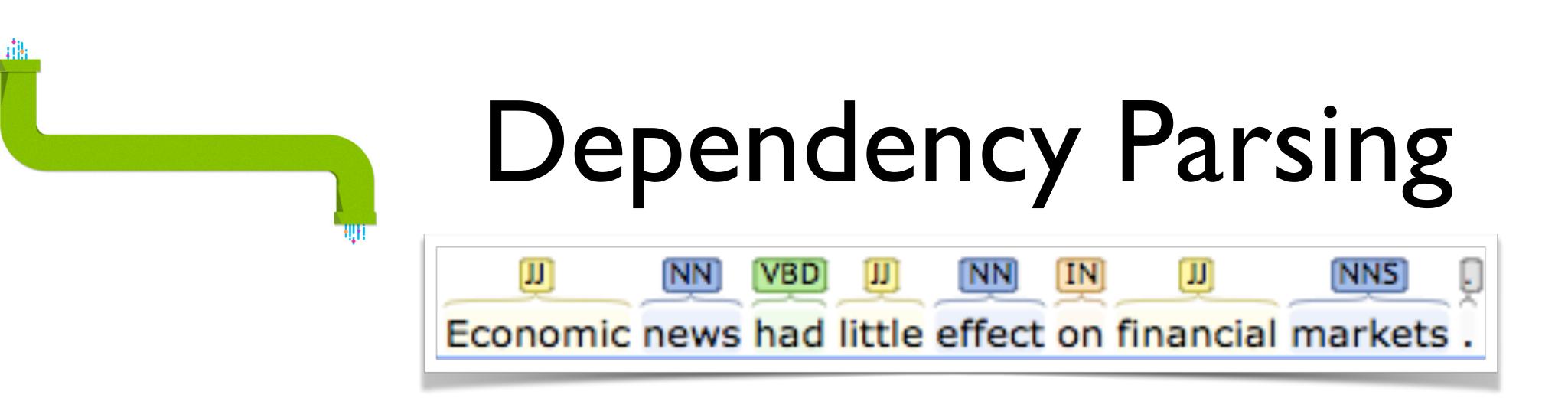
little effect on financial markets .

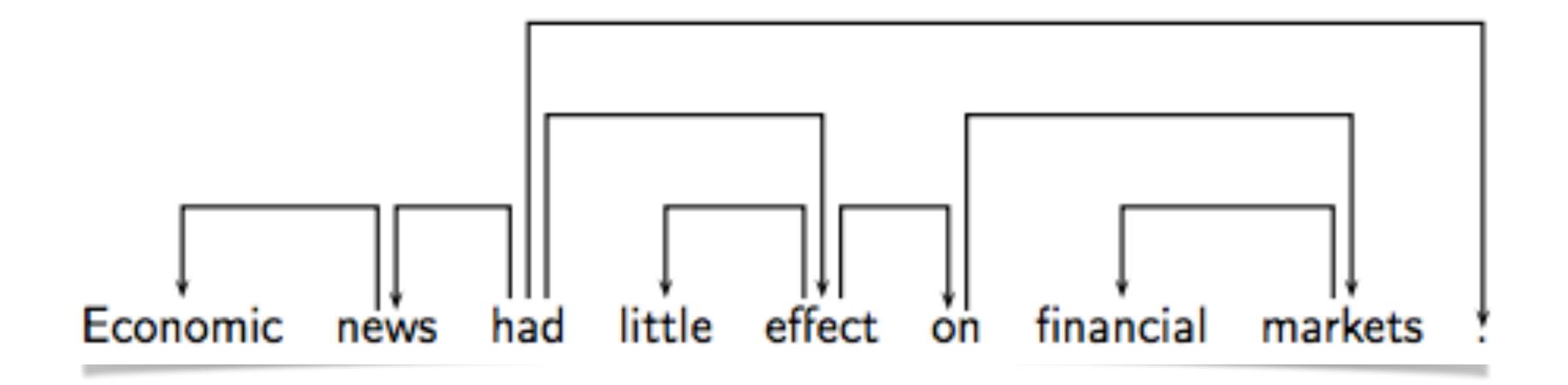


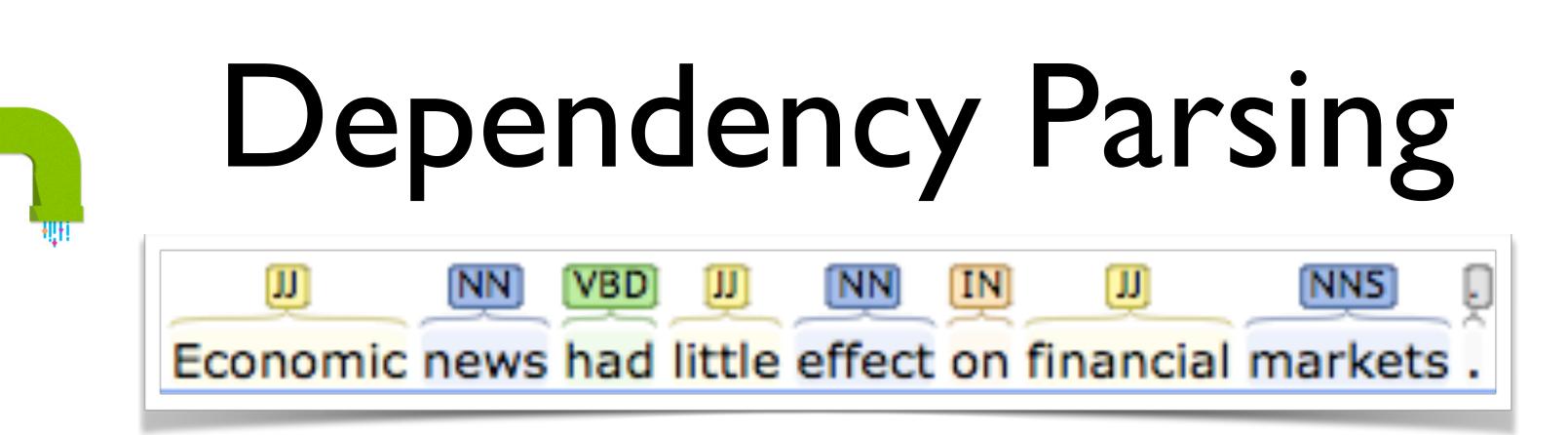




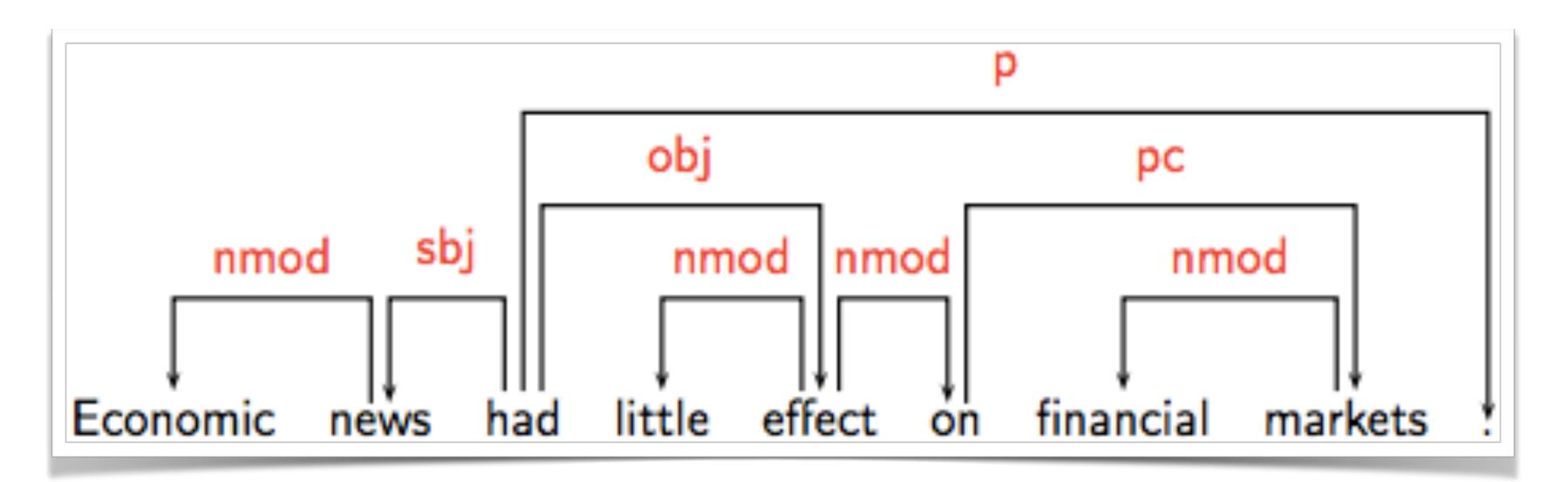






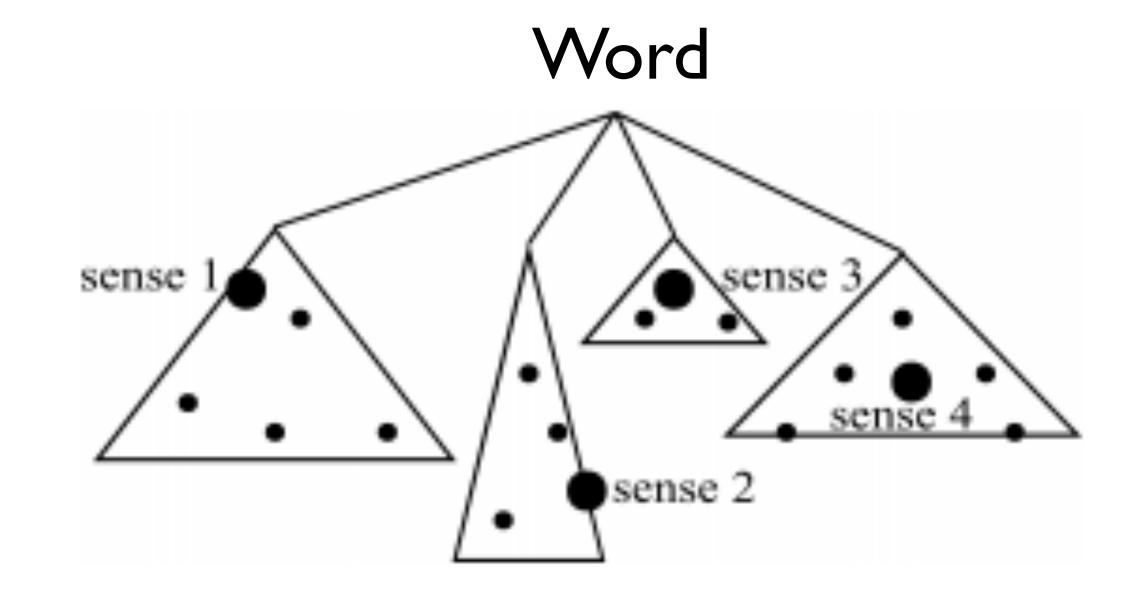


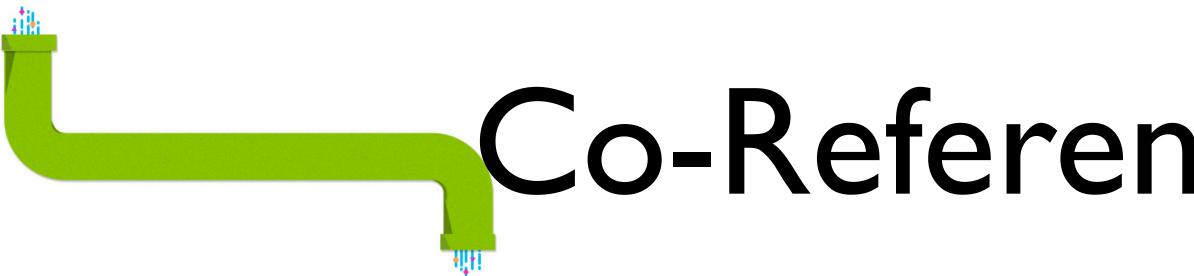
. ik



- Classifying the meaning of a word among many possible interpretations.
 - Classification can be done in a myriad of ways.
 - Still an open NLP problem
 - like bass!

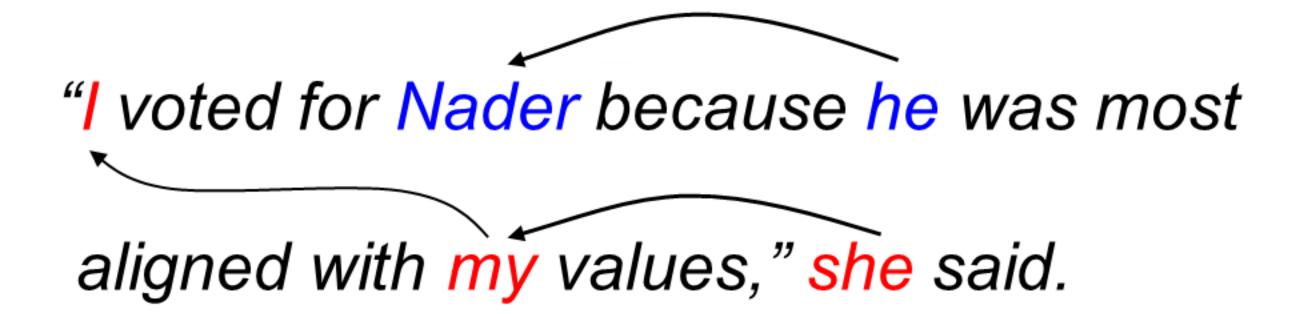
Word-Sense Disambiguation





Determining the mentions in a document that correspond to the **same** entity.

Co-Reference Resolution



Co-Reference Resolution

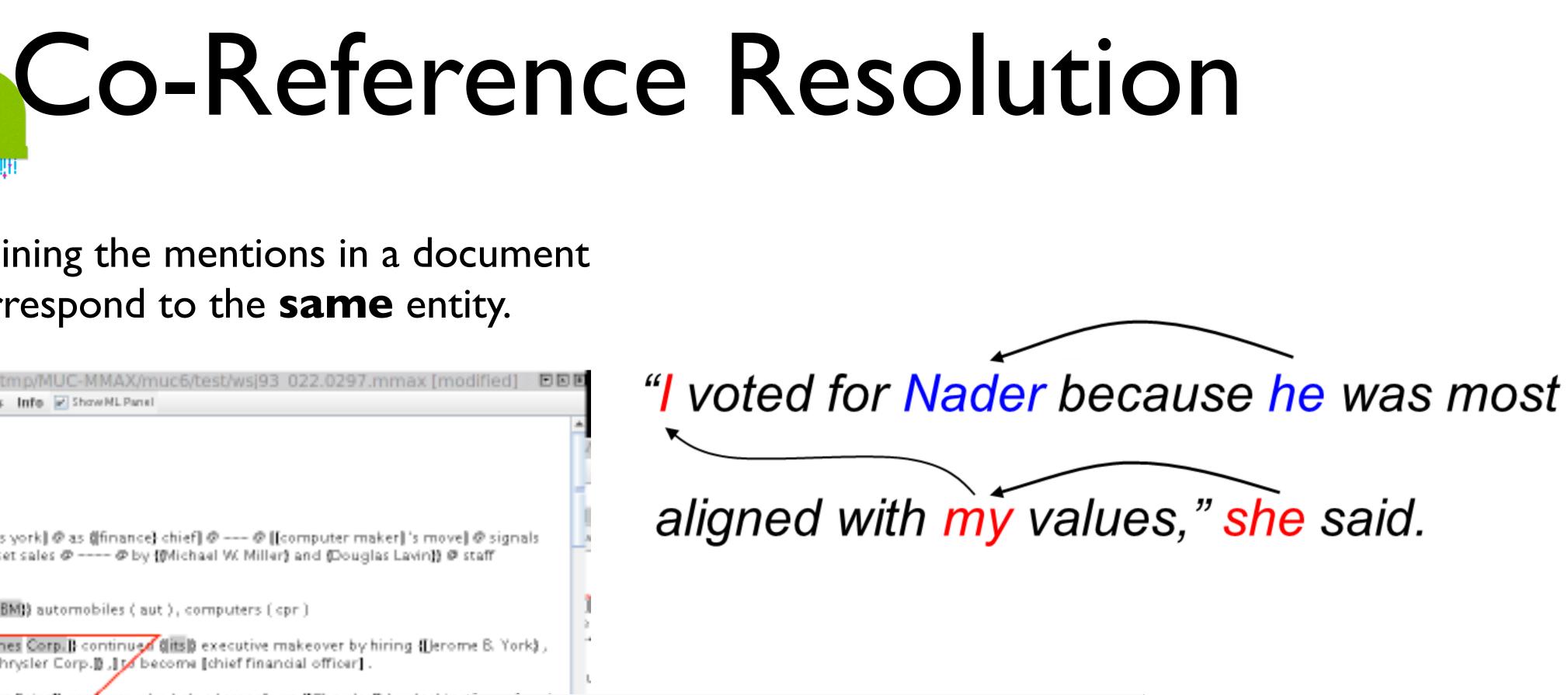
Determining the mentions in a document that correspond to the **same** entity.

manum 14	Display Tools Plugins Info Show ML Pariel	_
DOCID: wsj9	\$_022.0297	
DOCN0: 930	504-0023.	
strategy of cu reporters of t DD: 05/04/S	points Ø @[Chrysler]) 's york] Ø as @finance} chief] Ø Ø [[computer maker] 's move] Ø signals is Ø in Hits] : costs , asset sales Ø Ø by @Michael W. Miller) and @Douglas Lavin}} Ø staff ie wall street journal 3 irnal (j.) . (page a3 s (IBM)) automobiles (aut), computers (cpr.)	1
	stional Business Machines Corp. } continued (its) executive makeover by hiring ([Jerome B. York) (the turnaround at ([Chrysler Corp.]) ,] to become [chief financial officer] .	5
	i4 years old ,]] is a ([[West Point]]) graduate who helped transform ([[Chrysler]]) by slashing [[costs]] ar s of dollars in assets .	ıd
	ntment] is a strong sign that {[[IBM]] 's new chairman , [Louis V. Gerstner Jr.] ,] plans a similar re wounded computer giont])	
([Mr. Gerstne Manhattan of	n)) raced to hire {[Mr. York]} after meeting {[him]} for the first time just three weeks ego in ([IBM])) ices .	's
	month , 創Mr. GerstnerB has also brought in outsiders to run 創版開算 's communications and iness , and is searching for a new head of personnel .	
	as [executive vice president for @inance]} and a board member at @Chrysler]} , where {[he]} spens ancial posts and running several [car] and truck divisions .	C
{[Chrysler]} (id n't name a successor @yesterday}.	

"I voted for Nader because he was most aligned with my values," she said.

Determining the mentions in a document that correspond to the **same** entity.

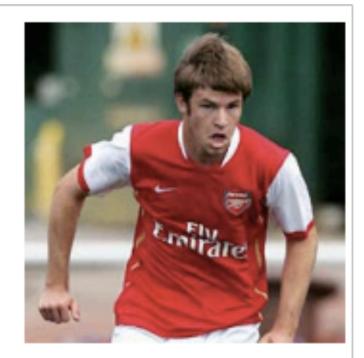
El MMAX2 1.12 /home/yannick/tmp/MUC-MMAX/muc6/test/wsj93 022.0297.mmax [modified] © El File Settings Display Tools Plugins Info ShawMLPanel
DOCID: wsj98_022 .0297
DOCNO: 930504-0023 .
HL: ([EM]) appoints @ ([Chrysler]) 's york] @ as ([finance] chief] @ @ [[computer maker] 's move] @ signals strategy of cuts @ in [[its]] costs , asset sales @ @ by ([Michael W. Miller]) and (Douglas Lavin]) @ staff reporters of the wall screet journal DD: 05/04/93 wall street journal (j.). (page as c (IBM]) automobiles (aut), computers (cpr.)
TXT: @International Business Machines Corp.]} continued @its]8 executive makeover by hiring {[lerome B. York} , an architect of the turnaround at {[Chrysler Corp.]] ,] to become [chief financial officer] .
{[Mr. York], 54 years old ,] is a {[West Point]} graduate who helped transform {[Chrysler]] by slashing selling billions of dollars in assets .
{[[His]] appointment] is a strong sign that {[[BM]] 's new chairman , [Louis V. Gerstner Jr.] ,] plans a si strategy at {[the wounded computer gient]]
{[Mr. Gerstner]]) raced to hire {[Mr. York]]) after meeting {[him]} for the first time just three weeks ago in ([IBM]) 's Manhattan offices .
In @his@first.month , @Mr. Gerstner. has also brought in outsiders to run @IBM@ 's communications and disk-drive business , and is searching for a new head of personnel .
{[Mr. York]} was [executive vice president for @inance]} and a board member at ([Chrysler]}, where {[he]] spent 12 years in financial posts and running several [car] and truck divisions .
{[Chrysler]} did n't name a successor ∰yesterday]}.



ity/Co-reference Chains

Cross-Document Entity Resolution

- Take coreference chains from *across documents* and match the ones that correspond to the same real world entity.
 - A type of clustering problem.
 - Use the features from the document.



Thomas Cruise

Michael Jordan

Entity Resolution/Coreference Resolution is an ubiquitous problem.

- Entity Resolution/Coreference Resolution is an ubiquitous problem. Many models and many domains.

- Entity Resolution/Coreference Resolution is an ubiquitous problem. Many models and many domains.
- We use the McCallum method (McCallum, Wellner 2004)

- Entity Resolution/Coreference Resolution is an ubiquitous problem. Many models and many domains.
- We use the McCallum method (McCallum, Wellner 2004)
 - Statistically sound Based on conditional random fields (CRF).

- Entity Resolution/Coreference Resolution is an ubiquitous problem. Many models and many domains.
- We use the McCallum method (McCallum, Wellner 2004)
 - Statistically sound Based on conditional random fields (CRF).
 - Relational Does not assume independence.

We extract set of noun phrases from text documents using named entity recognition.

We extract set of noun phrases from text documents using named entity recognition.

We extract set of noun phrases from text documents using named entity recognition.

...Late-night host and comic Jimmy Fallon was born on...

We extract set of noun phrases from text documents using named entity recognition.

...Late-night host and comic **Jimmy Fallon** was born on...

...the Kanye West appearance on **Jimmy Kimmel** Live last...

We extract set of noun phrases from text documents using named entity recognition.

...Late-night host and comic **Jimmy Fallon** was born on...

...the Kanye West appearance on **Jimmy Kimmel** Live last...

...you work at **Jimmy John**'s sammich shops, where...

We extract set of noun phrases from text documents using named entity recognition.

...Late-night host and comic **Jimmy Fallon** was born on...

...the Kanye West appearance on **Jimmy Kimmel** Live last...

...you work at **Jimmy John**'s sammich shops, where...

Jimmy Kimmel Shares His "Only Complaint" About **Jimmy Fallon**

recognition.

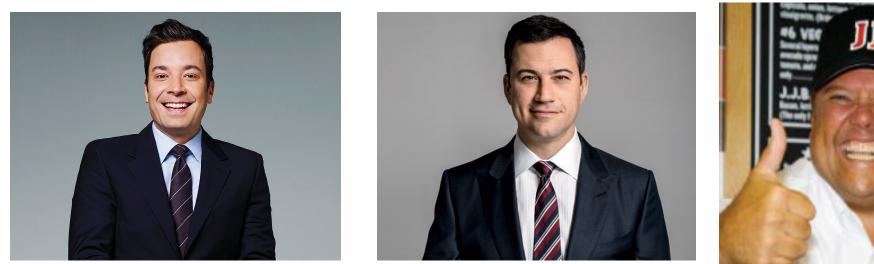
...Late-night host and comic **Jimmy Fallon** was born on...

...the Kanye West appearance on **Jimmy Kimmel** Live last...

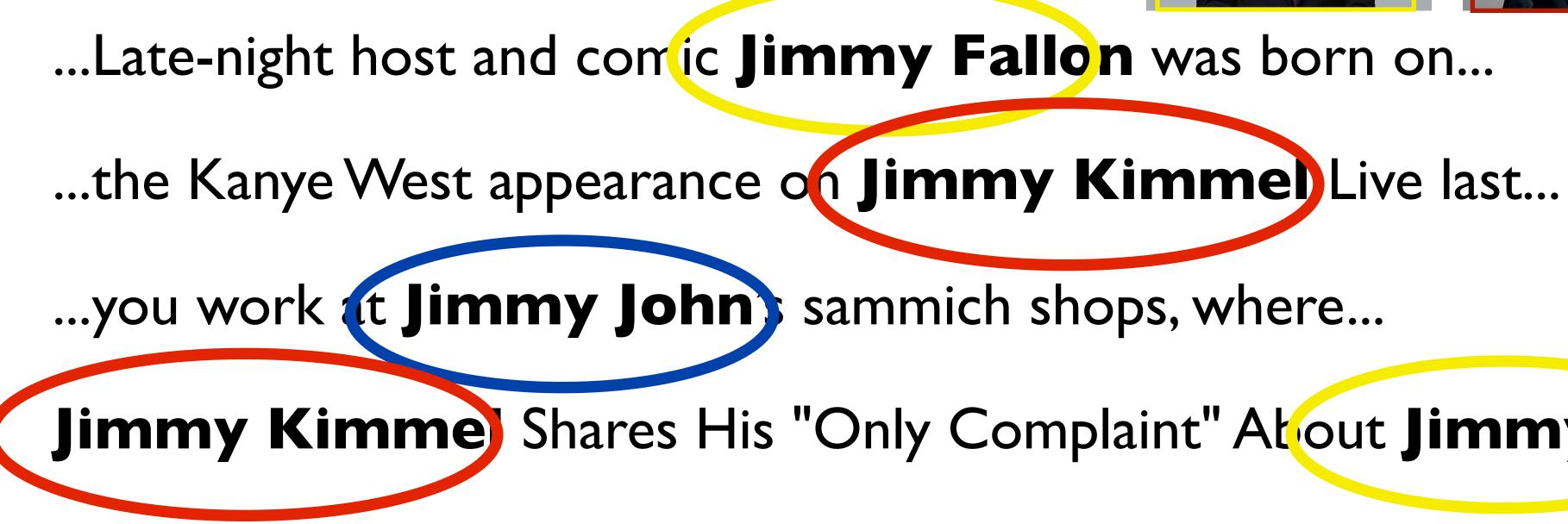
...you work at **Jimmy John**'s sammich shops, where...

Jimmy Kimmel Shares His "Only Complaint" About **Jimmy Fallon**

We extract set of noun phrases from text documents using named entity



recognition.



We extract set of noun phrases from text documents using named entity

Jimmy Kimme) Shares His "Only Complaint" Alout Jimmy Fallon