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“With great power comes great
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Al at Google: our principles
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CEO

Published Jun 07, 2018

At its heart, Al is computer programming that learns and adapts. It can't solve every
problem, but its potential to improve our lives is profound. At Google, we use Al to make
products more useful—from email that's spam-free and easier to compose, to a digital

assistant you can speak to naturally, to photos that pop the fun stuff out for you to enjoy.

Beyond our products, we're using Al to help people tackle urgent problems. A pair of high
school students are building Al-powered sensors to predict the risk of wildfires. Farmers
are using it to monitor the health of their herds. Doctors are starting to use Al to help
diagnose cancer and prevent blindness. These clear benefits are why Google invests
heavily in Al research and development, and makes Al technologies widely available to
others via our tools and open-source code.

We recognize that such powerful technology raises equally powerful questions about its
use. How Al is developed and used will have a significant impact on society for many
years to come. As a leader in Al, we feel a deep responsibility to get this right. So today,
we're announcing seven principles to guide our work going forward. These are not
theoretical concepts; they are concrete standards that will actively govern our research
and product development and will impact our business decisions.

We acknowledge that this area is dynamic and evolving, and we will approach our work
with humility, a commitment to internal and external engagement, and a willingness to
adapt our approach as we learn over time.

https://www.blog.google/technology/ai/ai-principles/



Objectives for Al applications GO gle

Be socially beneficial.

Avoid creating or reinforcing unfair bias.

Be built and tested for safety.

Be accountable to people.

Incorporate privacy design principles.

Uphold high standards of scientific excellence.
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Be made available for uses that accord with these principles.



Al Applications we won’t pursue GO gle

1.

Technologies that cause or are likely to cause harm. Where there is
a material risk of harm, we will proceed II iwhere we believe that

the benefits suhstantially outweigh the and will incorporate
appropriate constraints.

Weapons or other technologies whose ourpose or
implementation is to cause or directly faclli atto people.
Technologies that gather or use information for surveillance

violating internationally accepted

Technologies whose purpose contravenes widely accepted
principles of international law and human



Blas Types



Reporting Bias

occurs when the frequency of events, properties, and/or outcomes
captured in a data set does not accurately reflect their real-world
frequency. This bias can arise because people tend to focus on
documenting circumstances that are unusual or especially memorable



Automation Bias

is a tendency to favor results generated by automated systems over

those generated by non-automated systems, irrespective of the error
rates of each.



Selection bias

occurs if a data set's examples are chosen in a way that is not reflective
of their real-world distribution.



Selection bias

occurs if a data set's examples are chosen in a way that is not reflective
of their real-world distribution.

* Coverage bias -- occurs when data is not selected in a representative
fashion.



Selection bias

occurs if a data set's examples are chosen in a way that is not reflective
of their real-world distribution.

* Sampling bias -- occurs when proper randomization is not used
during data collection.



Selection bias

occurs if a data set's examples are chosen in a way that is not reflective
of their real-world distribution.

* Non-response bias -- occurs when data are unrepresentative due to
participation gaps in the data collection process.



Group Attribution Bias

is a tendency to generalize what is true of individuals to an entire group
to which they belong.



Group Attribution Bias

is a tendency to generalize what is true of individuals to an entire group
to which they belong.

* In-group bias -- A preference for members of a group to which you
also belong, or for characteristics that you also share.



Group Attribution Bias

is a tendency to generalize what is true of individuals to an entire group
to which they belong.

* Out-group homogeneity bias -- A tendency to stereotype individual
members of a group to which you do not belong, or to see their
characteristics as more uniform.



Confirmation Bias

is where model builders unconsciously process data in ways that affirm
preexisting beliefs and hypotheses.



Confirmation Bias

is where model builders unconsciously process data in ways that affirm
preexisting beliefs and hypotheses.

* Experimenter’s bias — a model builder may actually keep training a
model until it produces a result that aligns with their original
hypothesis.



Bias Types

* Reporting

* Automation

* Selection (coverage, non-response, sampling)
e Group attribution (in-group, out-group)

* Implicit (confirmation, experimenters)



The (closer) to full picture of the pipeline.

: o Deployed model
, Data Training Set feedback
G

- eneration

Optimize the model
in the Cloud™

— ﬁ
Deploy in the

1Eva|uate World

¥

Data
Cleaning

Real world
Implications
20



There is Bias hiding in every step!
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Bias in the Al/ML Pipeline
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Biases in Classification

Simpson's Paradox by example (Statistical Bias)



Negative No No Positive
Correlation Correlation Correlation Correlation
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X
Trends in data



In real world data
it is not so simple

e Correlations can be weak

 We use Pearson's Correlation
coefficient to determine the
trends.

0 < |r| <0.3 weak correlation

|r| > 0.7 Strong correlation




Cholesterol

Exercise

Pearl, Judea. "Causal Inference in Statistics." (2016): 3-4.



Trends in data can be misleading.

When we separate the data by another parameter, we uncover a more
appropriate trend.

Cholesterol

Exercise




Simpson’s Paradox

* When a trend between two variables is reversed in all subgroups of
the data.

* If the trend is reversed for some subgroups, it is a mix effect.
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Simpson’s Paradox (Rate-based)

Hits / At Bats

David Justice

Derek Jeter

Pearl, Judea. “The Book of Why." (2018): 203.




Mix Effects (Rate-based)

Men Women
Department
Applicants | Admitted Applicants Admitted

Applicants Admitted A 825 62% | 108
B 560 63% 25
Men 8442 44% C 325 37% 593 34%
D 417 33% 375
Women 4321 35%
E 191 28% 393 24%
F 373 6% 341



Introduction
to Probability




Rolling a Die Creates a Random Variable

X Probability(X)

/ 1 Y6

2 Y6

Random Variable
* |f we roll a 6-sided die, what is the

probability of rolling a 1?

3 Y6 * What is the probability of rolling
an even number?

4 Y6
5 Y6

6 Y6



Die Rolls are Uniform
Probabilities

* When we roll a 6-sided die, what is the "most
likely” value?

* Imagine rolling the die 100 times, what would the
“average roll be?

 3.5=1%(1/6) + 2*(1/6) + 3*(1/6) + ... + 6*(1/6)

* 3.5=(1/100)*(100*1*(1/6) + 100*2*(1/6) + ... +
100*6*(1/6))

* The expected value of a random variable can be
thought of as the mean or average.



tmport random

rolls = [random.randint(1,6) for i1 in
range(0,100000) ]

average_rolls = sum(rolls)/len(rolls)

print(average_rolls)

nost

ould the

(1/6)

)+ ..+

can be



Relationships Among Random Variables

* Independent variables: knowing one event has happened does not change
the probability that the other happens

* Probability of rolling a 1 and flipping a head
* When X and Y are independent, P(X and Y) = P(X)P(Y)

* Dependent variables: knowing one event has happened gives us new
information, affecting the probability that the other happens

* Probability that the sum of two die rolls being a 5, if the first roll was a 3



Conditional Probability

The probability of X given Y has occurred is P(X|Y), for example,

P(sum = 5 first die = 3) = P(sum is 5 if first dieis 3) = 1/6
Joint Probability

PCA dB
p(AB) = ——~and B)

P(B)

Conditional Probability




Probability: Example

e By looking at a table of all possibilities, we found that

P(sum = 5|first die = 3) = ¢

. P(X and Y . . .
e Now, using P(X|Y) = | H‘;',' -, we can calculate this without needing to find

every possible value of two dice rolls:

P(second die = 2 and firstdie = 3)

P(sum = 5| first die = 3) = P(first die = 3)

~1/36
- 1/6
1
©



Conditional Probabilities are not Joint Probabilities

If we let X be the first die roll of value 3. and Y be the second of value 2, and Z be
the sum, then

e Conditional probability:
P(Z|X) ~P(sum = 5|first die = 3) = &

e Joint probability:
P(Xand Y) =P(roll 2and 3) — =

e Probability of Z
P(Z) - P(X+Y)—=P(sum=5)= %



Conditional, Joint, & Marginal Probabilities are Related

Let X and Y be random variables,

1.

P(XamdY)  PX)PY)
PlY) PY)

If X and Y are independent then P(X|Y) =

~ P(X)

Example: let X be the outcome of rolling a 6-sided die and let Y be the
outcome of flipping a coin. Suppose we know that Y is “heads.” What is the
probability that we roil a 3? This tells us that P(roll 3|heads) = P(roll 3). This
matches intuition — flipping a coin does not change the outcome of rolling a
dre.



Conditional, Joint, & Marginal Probabilities are Related

et X and Y be random variahles.

2. P(X)=) P(X|Y)P(Y)
1

Example: let X be the sum of rolling two dice and let Y be the outcome of the
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Conditional, Joint, & Marginal Probabilities are Related
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Conditional, Joint, & Marginal Probabilities are Related

Let X and Y be random varables.

_ o R P(X and Y) P(X)P(Y) A
1. IfXandY are independentthen,P(XY) = = = P(X)

Y ) PlLY)
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~ Marginal Probability



Conditional Probabilities and Bayes’ Theorem

Sometimes we want to find P(X]|Y) when we already know P(Y | X)

P(X|Y)P(Y)
P(X)

P(Y|X) =



Bayes’ Theorem: Example

Sometimes we want to find P(X|Y) when we already know P(Y | X).
For instance, Plfirstdie = 3jsum = §5) = lx :

We can verify this using Bayes' Theorem.

P(sum = 5/first dic = 3) P(first dic = 3)
P(sum — 5)

P(first die — 3|sum = §)




Sample Exercise: Peanut Chocolate Detector

Assumptions: Suppose we have a new device that distinguishes whether or not
a type of chocolate contains peanuts, If a chocolate contains peanuts, 99% of the
tme it correctly reports a positive result. leff'«.' se, If a chocolate does not contain
peanuts, 99% of the time It correctly reports a negative result. Imagine 1% of all
chocolates contain peanuts.

Question: If the device reports that a chocolate contains peanuts, what is the

probability that the chocolate actually does contain peanuts?



Sample Exercise: Peanut Chocolate Detector

p = random variable indicating whether peanuts are in a chocolate bar
d = random variable indicating whether we detected peanuts in a chocolate bar.
We were given P(p) = 0.01. P(d|p) — 0.99. and P(notd|not p} = (.99

We can then calculate P(d|not p) = 0.01 andP(not p) = 0.01.

'hen, P(d) — P(d|p)P(p) + P(not d|not p) P(not p).

Pld piPlp) 0.99-0.01

) \ J "
B'f" t’n':'i.'y'E"i-' ' ]I’:‘L[EII F’II)‘(f} — Pld T T US




Thanks!




