
Int J Software Informatics, Volume 10, Issue 3 (2016), pp. 000–000 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c⃝2016 by ISCAS. All rights reserved. Tel: +86-10-62661048

DOI: 10.21655/ijsi.1673-7288.00230

A Framework for Interactive t-SNE Clustering

Jared Bond, Christan Grant, Joshua Imbriani and Erik Holbrook

(University of Oklahoma, School of Computer Science Norman, Oklahoma)

Abstract In this paper, we describe our progress in creating the framework for an

interactive application that allows humans to actively participate in a t-SNE clustering

process. t-SNE (t-Distributed Stochastic Neighbor Embedding) is a dimensionality

reduction technique that maps high dimensional data sets to lower dimensions that can

then be visualized for human interpretation. By prompting users to monitor outlying

points during the t-SNE clustering process, we hypothesize that users may be able to make

clustering faster and more accurate than purely algorithmic methods. Further research

would test these hypotheses directly. We would also attempt to decrease the lag time

between the various components of our application and develop an intuitive approach for

humans to aid in clustering unlabeled data. Research into human assisted clustering can

combine the strengths of both humans and computer programs to improve the results of

data analysis.

Key words: t-SNE; clustering; interactive analytics

Bond J, Grant C, Imbriani J, Holbrook E. A framework for interactive t-SNE clustering.

Int J Software Informatics, Vol.10, No.3 (2016): 000–000. http://www.ijsi. org/1673-

7288/10/230.htm

1 Introduction

Computers have surpassed humans in the completion of several complex tasks[1],

leaving humans out of most algorithm processing loops. By the time humans can

perceive errors, process corrections, and submit fixes, most iterative algorithms will

have already moved forward. When the amount of data to be processed is large

or rapidly changing, accurately visualizing high dimensional data sets for human

interpretation presents a challenging problem[3,7,9].

Many researchers have sought to map high dimensional data to lower dimensional

representations that humans can perceive[2,4,8]. These techniques attempt to preserve

the patterns in as much of the original data’s structure as possible. While the academic

community has focused on algorithmic approaches to visualizing data, there has been

relatively less research into providing human users with interactive roles in algorithmic

processes[5].

Clustering, often one of the first methods employed for exploratory data analysis,

algorithmically classifies data into logical groups. Though many improvements have

been made to clustering processes, it remains difficult to produce quality clusters.

Corresponding author: Christan Grant, University of Oklahoma, School of Computer Science, 110
W. Boyd, DEH 234, Norman, Oklahoma, 73019. Email: cgrant@ou.edu
Received 2016-08-15; Revised 2016-10-01; Accepted 2016-10-28.

2 International Journal of Software and Informatics, Volume 10, Issue 3 (2016)

Data scientists often rely on the output of a clustering algorithm over many iterations

to properly develop clusters. This creates a human-algorithm workflow for analyzing

data that falls short of fully engaging the human. Instead of only interacting with the

algorithm by adjusting parameters, humans should be able to actively participate in

the clustering process alongside the algorithm.

In this paper, we discuss our current progress in creating an interactive

application that allows users to aid in a t-SNE clustering process (see Figure 1).

t-SNE (t-Distributed Stochastic Neighbor Embedding) is an efficient dimensionality

reduction algorithm that enables humans to interpret low dimensional

transformations of high dimensional data sets[11]. In particular, we establish the

ability for users to monitor outliers, since these are the points that the algorithm is

likely struggling to classify. We believe that enabling humans to aid in the clustering

process holds promise for clustering data both more accurately and more quickly

than existing methods that rely solely on algorithmic methods.

Figure 1. Interactive t-SNE Visualization. Our application supports multiple users

working together to assist t-SNE in clustering data, represented by the various cursors.

Hovering over a point brings up a tooltip that displays the point’s relevant text. The

points are colored to correspond to the categories in the 20 Newsgroups dataset. The right

panel allows users to toggle between viewing high and low outliers.

2 Background

t-SNE provides a method for embedding a high dimensional data set X into a 2-

or 3-D representation Y that can be plotted[11]. Unlike previous linear data reduction

techniques that rely on forcing dissimilar points to be far apart (e.g. PCA), t-SNE

relies on keeping similar points close together. Ensuring that similar points remain

close together results in better visualizations of nonlinear data sets by preserving local

Jared Bond, et al.: A framework for interactive t-SNE clustering 3

structure. Because many modern data sets are nonlinear, t-SNE thus provides a more

reliable method for clustering than pre-existing methods.

To quantify the notion of similarity, t-SNE begins by computing the conditional

probability that each point xi ∈ X in the high dimensional data set would choose

its neighbor xj ∈ X under a Gaussian distribution centered on xi. This conditional

probability is given by:

pj|i =
exp(−||xi − xj ||2/2σ2

i)∑
k ̸=i exp(−||xi − xk||2/2σ2

i)

Points that are close together in space therefore produce high similarity

probabilities while points that are far apart have correspondingly low probabilities.

We then compute the joint probabilities pij in the high dimensional space as

symmetrized conditional probabilities, pij =
pj|i+pi|j

2n .

We proceed to generate the probabilities in the low dimensional space according

to a Student t-distribution, with each point qij given by:

qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

Due to its fat tails, the Student t-distribution allows for distances to be amplified

to prevent crowding in the center of the plot, and it carries the additional advantage

of being faster to compute than a Gaussian distribution since no exponentials are

involved.

The final step in the t-SNE process is to minimize the differences between the

high dimensional probabilities and the low dimensional probabilities. This is

accomplished by performing gradient descent on the Kullbach-Leibler Divergence,

which can be thought of as a ratio between the high and low dimensional joint

probabilities that preserves local structure by heavily penalizing similar points that

are incorrectly modeled as being far apart from each other. The gradient is given by:

δC

δyi
= 4

∑
j

(pij − qij)(1 + ||yi − yj ||2)−1(yi − yj)

Because the Kullbach-Leibler Divergence is computationally expensive (running

in O(n2) time), the exact version of t-SNE is infeasible for even modestly large data

sets. To improve upon the original t-SNE algorithm, one can use a Barnes-Hut

approximation that reduces the time complexity substantially to O(n log n)[10]. This

approximation uses a quadtree data structure where each node stores the center of

mass of its children. This summary value provides a good approximation of the true

joint probabilities when the data points are relatively close together, resulting in the

significant improvement in time complexity. Barnes-Hut t-SNE therefore provides a

feasible method for visualizing data sets containing millions of points.

In this paper we describe a system for users to interact with t-SNE as it clusters

data. With large data sets, the clustering process can still take a substantial amount

of time to terminate, and the algorithm can struggle with clustering boundary points

that humans may be able to identify more easily.

4 International Journal of Software and Informatics, Volume 10, Issue 3 (2016)

3 Architecture

Our system accomplishes two goals: it displays an animated plot of points as

they are clustered by t-SNE, and it allows a user to move one or more points in the

client and incorporate the changes into the running t-SNE algorithm. As illustrated

in Fig. 2, our system is organized into four main components: a real-time database,

a modified t-SNE algorithm, a non-blocking I/O server that handles communication

between the client and database, and a web client.

Figure 2. Interactive t-SNE Visualization Architecture. The t-SNE algorithm runs in a

Python script on the server, committing intermediate results to the database (A). The

database saves these changes, firing a change notification (B) to the Node server which

then alerts the client of the update (C) so that it can animate the points’ movement.

Similarly, users can update points in the client (D), which prompts the listening Node

server to update the database (E). When this happens, the database fires a change

notification (F) that is detected by a dedicated thread in the Python script which updates

the local values of the points for the t-SNE process.

We use the open-source database RethinkDB to store data and perform real-

time queries. RethinkDB features changefeeds, which automatically alert listening

programs when the database changes and pass along the updated values. This feature

removes the need to poll the database for changes, making it much easier to write

interactive client-server applications.

Our t-SNE algorithm is forked from scikit-learn’s Python implementation[6].

We modify their t-SNE script in order to commit the current (x, y) coordinates of

each point to our database after every ith iteration through the algorithm’s gradient

descent. This enables the client to display a constantly updated plot of the points as

they are clustered by the t-SNE algorithm. Additionally, we create a separate

thread in the t-SNE script that listens for client-side updates in the database. In

this way, we can update the (x, y) coordinates of the points in the algorithm to

reflect any changes that the user (or users) makes on the client.

We also implement a Node.js server to monitor changes in both the database and

the client. We use Node.js for our server because it is readily compatible with both

our client and our database and because it handles I/O asynchronously, allowing it to

Jared Bond, et al.: A framework for interactive t-SNE clustering 5

support multiple clients well. When the algorithm updates the database with adjusted

(x, y) coordinates, the server passes the new values to the client. Similarly, when a

user updates the location of a point on the client, the server commits the changes

to the database, keeping the two in sync. Finally, we animate the data points in a

browser application in response to the running t-SNE algorithm. The data is modeled

using D3.js, a JavaScript library that provides extensive support for manipulating and

animating data.

While we have only used our application with single users, our architecture is

scalable to support multiple clients monitoring the same data set. Just as single

users could aid in clustering, multiple users could cooperate to distribute the

workload among themselves and further speed the process. To allow users to take an

active role in the clustering algorithm, we direct them to track the top and bottom

k outliers, given by the points that have moved the most and least over the course of

the clustering process. Using AngularJS’s two-way data-binding features, we track

the top k outliers since it is likely that they are composed of oscillating points, or

data that the algorithm is struggling to cluster by itself. Similarly, the bottom k

outliers are points that could be surrounded by dissimilar points, preventing them

from moving, or they could be points that the algorithm leaves alone when it is

unable to cluster them confidently.

4 Experiments

In our experiments, we measured the performance differences between our system

with no interaction and a purely algorithmic approach in order to gauge our system’s

baseline performance. First, we measured the runtime of scikit-learn’s unmodified t-

SNE script to serve as a control group. Then, we measured the runtime of our modified

t-SNE script with visualization and no human interaction. Finally, we measured the

lag time from when points are committed by t-SNE to the database and when the

client registers the changes.

We used various subsets of the 20 Newsgroups data set, which consists of 11,314

news items labeled according to one of twenty categories. We used labeled data so

that we could visually gauge the t-SNE algorithm’s ability to accurately cluster data

in addition to measuring the various runtimes. The following experiments were run

on the data set after first using Truncated SVD to reduce the dimensionality to fifty

in order to speed up computation times and smooth out noise in the data. We used

the default values for all of the parameters except perplexity, which we set to 40 to

reflect the density of our data set. All experiments were run on a 2015 MacBook Pro

with a 2.5GHz quad-core i7 processor.

Figure 3 displays the runtimes of the unmodified t-SNE algorithm and the

modified t-SNE algorithm with visualization. The x-axis plots the total number of

categories used from the 20 Newsgroups data set, i.e., x = 4 corresponds to a four

category subset of the total data set. The y-axis plots the time in seconds for the

algorithm to terminate. Our data indicate that the comparative trustworthiness of

the two t-SNE algorithms (where values closer to 1 indicate greater fidelity to the

original data set) is essentially the same, confirming that the underlying clustering

process is identical for both versions.

6 International Journal of Software and Informatics, Volume 10, Issue 3 (2016)

Figure 3. t-SNE Runtimes. Compared to the unmodified t-SNE algorithm implemented

in Scikit-Learn, our modified t-SNE algorithm without human interaction is slower due to

the cost of committing intermediate changes to the database for the client to animate.

However, by visualizing changes and enabling human involvement, this framework could be

valuable if human participation speeds clustering, aids in cluster accuracy, or provides

insight into the underlying structure of the data.

Figure 4 displays the time for the database to process updates, along with the

total event processing time (given by actions (A) + (B) + (C) in Fig. 2). Again, the

x-axis plots the total number of categories used for that simulation, where each set

is a subset of the total 20 Newsgroups data set. The y-axis plots time in

milliseconds. While the total end-to-end time exhibits a dip at the upper category

levels relative to the database processing time, this is most likely attributable to

variations in connectivity and the amount of tasks running in the background.

Alternatively, this dip could indicate that with larger data sets, the computational

power necessary for clustering requires the MacBook Pro to devote more processing

cores to the task than with smaller data sets, possibly indicating that better

performance could be achieved through parallelization.

Figure 4. Lag Between Server and Client. This graph charts the database lag time along

with the time to process events, given by (A) + (B) + (C) in Figure 2. While the database

incurs some time to process updates, this figure shows that event communication costs

become the main bottleneck as the size of the dataset grows.

Jared Bond, et al.: A framework for interactive t-SNE clustering 7

Finally, our initial, qualitative findings are that the browser-based client

provides an intuitive and useful mechanism for enabling human users to become

active participants in the clustering process. Humans are able to drag either single

points or multiple points to the cluster in which they belong, and the algorithm is

able to incorporate these updated coordinates while continuing its gradient descent

optimization.

5 Discussion

While our visualization of the t-SNE algorithm slowed the computation time,

we believe that visualizing the process provides benefits that make the slowdowns

a worthwhile tradeoff compared to simply running the algorithm from the console.

Additionally, we believe that much of this slowdown is due to both the server and

client running on a local machine instead of using a dedicated remote server, so it

is likely that our application’s performance could be improved. In visualizing the

process, users can interact with the algorithm by monitoring outlying points and

tracking the movement of the data over time. The visual shapes of clusters and

the identification of problem points could potentially provide useful insights into the

underlying structure of the data that a non-interactive, non-visual approach would

lack.

Our visualized approach still has much room for improvement, however. In

particular, the lag time between the t-SNE algorithm and the client should be

improved in order to make the application more responsive to user input. While we

were able to use the linear regression equation generated for the end-to-end lag time

to add a delay function to the data points’ animation speeds to smooth over data

discrepancies, more research should be done to correct the heart of the problem.

Additionally, more research should be done to handle unlabeled data. While we are

confident that our approach can easily identify outliers for users to monitor,

unlabeled points would be harder for users to classify than labeled points. Visually

describing summary information for each forming cluster is thus a desirable next

step to improve users’ ability to aid the algorithm in clustering unlabeled data.

Once these changes to the system are finalized, we can then begin experiments with

human users to directly compare usability and accuracy between the purely

algorithmic method and the interactive version.

6 Summary

In this paper, we created an interactive t-SNE visualization application in order

to provide human users with meaningful roles in clustering processes. While our

visualization platform is slower than the algorithm running by itself, it provides the

added benefits of animating the clustering process and involving users as active

participants. Our initial assessment is that the application holds promise for

continued research into involving humans in clustering.

Future work will focus on designing and performing user acceptance tests and

modifying the interface in response to user feedback. We are particularly concerned

with obtaining quantitative data to determine if human users can make a significant

impact on the speed and accuracy of the clustering process. This research should

8 International Journal of Software and Informatics, Volume 10, Issue 3 (2016)

clarify the role that humans can serve in clustering by testing the efficacy of various

human actions: confirming existing clusters, creating new cluster centers, or scattering

existing clusters that have been classified incorrectly. Additionally, more work must

be done to improve the lag times of our application in order to make the process

more responsive to user input. Managing the number of points on the screen at once

could address this issue by collapsing nearby points together when the view is zoomed

out and separating them apart again when the view is zoomed in. We may be able

to leverage the underlying quadtree data structure in the Barnes-Hut algorithm to

manage these groupings. This could also alleviate the cognitive load users experience

when clustering a large number of points. Finally, future work should explore the

best methods for involving human users in aiding t-SNE when clustering unlabeled

data, including representing data with different glyphs instead of points.

Keeping human users involved in data analysis has the potential to make

clustering both faster and more accurate than current methods that are solely

algorithmic. Our work seeks to maintain a place for humans in data analysis rather

than ceding all analytical work to software programs. By combining the capabilities

of both humans and computers, our understanding of data and its applications for

society can only increase.

References

[1] Andersen E. Opening statement: Will computers out-compete us all?: The technological

singularity (ubiquity symposium). Ubiquity, 2014 (October): 1:1–1:8. ISSN 1530–2180.

10.1145/2668424. http://doi.acm.org/10.1145/2668424.

[2] Borg I, Groenen PJF. Modern multidimensional scaling: Theory and applications. Springer

Science & Business Media, 2005.

[3] Levy DM. To grow in wisdom: vannevar bush, information overload, and the life of leisure.

Proc. of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries. ACM. 2005. 281–286.

[4] Ng AY, Jordan MI, Weiss Y, et al. On spectral clustering: Analysis and an algorithm. Advances

in Neural Information Processing Systems, 2002, 2: 849–856.

[5] Paul CL, Argenta C, Elm W, Endert A. Future directions of humans in big data research:

Summary of the 1st workshop on human-centered big data research. 2014 IEEE International

Conference on Big Data (Big Data). 2014.

[6] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,

Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M,

Perrot M, Duchesnay É. Scikit-learn: Machine learning in python. J. Mach. Learn. Res.,

November 2011, 12: 2825–2830. ISSN 1532–4435. http://dl.acm.org/citation.cfm?id=19530

48.2078195.

[7] Pirolli P, Card S. The sensemaking process and leverage points for analyst technology as

identified through cognitive task analysis. Proc. of International Conference on Intelligence

Analysis, 2005, 5, 2–4.

[8] Tenenbaum JB, Silva VD, Langford JC. A global geometric framework for nonlinear

dimensionality reduction. Science, 2000, 290(5500): 2319–2323.

[9] In: Thomas JJ, Cook KA, eds. Illuminating the Path: The Research and Development Agenda

for Visual Analytics. IEEE Computer Society, 2005.

[10] van der Maaten L. Accelerating t-sne using tree-based algorithms. Journal of Machine Learning

Research, 2014, 15: 3221–3245.

[11] van der Maaten L, Hinton G. Visualizing high-dimensional data using t-sne. Journal of Machine

Learning Research, 2008, 9: 2579–2605.

