CRITICAL DATA EXPLORATION WITH SIMPSON'S PARADOX

Sarah M Brown, Chenguang Xu, Christan Grant

Brown University, University of Oklahoma

Simpson's Paradox

- - a trend reversal in subsets of the data
- We define the following components to formalize the definition
- **view**: a group of variables that define a way of analyzing the data ex: the axes of a plot or a table of a summary statistic
- trend: a relationship between a set of variables in a trend ex: a correlation or the ordering of rows
- grouping variable: a categorical variable that defines partitions of the data

Examples

	feat1	feat2	2 subgroup_trend group_feat subgrou		subgroup	trend_type	agg_trend	subgroup_slope	all_slope	angle
31	x1	x2	-0.241001	x1_x4_dpgmm	11	pearson_corr	0.78967	-1.534232	1.165499	106.274373
71	x1	x2	-0.426219	x2_x7_dpgmm	10	pearson_corr	0.78967	-1.024497	1.165499	95.063612
65	x1	x2	-0.506199	x2_x6_dpgmm	4	pearson_corr	0.78967	-0.896703	1.165499	91.253016
75	x1	x2	-0.511587	x2_x8_dpgmm	10	pearson_corr	0.78967	-0.896488	1.165499	91.246209
46	x1	x2	-0.511587	x1_x8_dpgmm	9	pearson_corr	0.78967	-0.896488	1.165499	91.246209
41	x1	x2	-0.556338	x1_x7_dpgmm	4	pearson_corr	0.78967	-0.881715	1.165499	90.773477
70	x1	x2	-0.541816	x2_x7_dpgmm	7	pearson_corr	0.78967	-0.877217	1.165499	90.628143

• **subgroup**: a partition of the data that has a single value of a given grouping variable

An occurrence of Simpson's Paradox is defined with respect to a given view of the data where a subgroup has the opposite trend of the whole dataset for that view

To detect Simpson's Paradox:

- 1. Iterate over views of the data
- 2. Compute the aggregate trend
- 3. iterate over the grouping variables
- 4. compute the subgroup trend for each value of the grouping variable 5. check for trend reversal

Regression Type

Classic Example: drug effectiveness by dosage and gender There's a linear correlation between two variables and grouping by another, a reversal can be in correlation coefficient

Rate Type

gende

Classic example: Berkeley Grad Admissions The trend is in the ranking of the groups divided by an 'explanatory' variable with the value of the 'outcome variable'

F 0.212121 0.136364 0.240506 0.361905 0.222222

M 0.024390 0.071429 0.250000 0.285047 0.242144

synthetic data of this form

53	x1	x2	-0.412662	x2_x4_dpgmm	1	pearson_corr	0.78967	-0.844946	1.165499	89.566377
49	x1	x2	-0.396308	x2_x3_dpgmm	3	pearson_corr	0.78967	-0.828170	1.165499	89.000889
21	x1	x2	-0.405062	x1_x2_dpgmm	5	pearson_corr	0.78967	-0.756850	1.165499	86.490601

Example occurrence ranking

Plot of above a designed SP view

Generalizing Simpson's Paradox

Using the above definitions, we want to consider:

- trends where *reversal* isn't well defined
- cases where grouping variables are not all known
- For more general trends we do the following:
- 1. consider distance between aggregate and subgroup trends
- 2. rank views by the distance instead of counting occurrences

Case Study: Racial Profiling

In a study of racial profiling and the impact of Marijuana reform on racial profiling we use our data augmentation and trend ranking tools to identify areas for qualitative analysis.

	feat1	feat2	subgroup_trend	group_feat	subgroup	trend_type	agg_trend	subgroup_slope	all_slope	angle
2	search_conducted_rate	year	-0.414566	state	СО	pearson_corr	-0.03903	-243.731682	-4.310706	12.825420
3	search_conducted_rate	year	-0.287439	state	NC	pearson_corr	-0.03903	-203.568453	-4.310706	12.779041
3	2 search_conducted_rate	year	-0.603026	state	MA	pearson_corr	-0.03903	-110.008840	-4.310706	12.539681
3	7 search_conducted_rate	year	-0.361134	state	ТХ	pearson_corr	-0.03903	-87.062721	-4.310706	12.402427
3	search_conducted_rate	year	-0.386635	state	MD	pearson_corr	-0.03903	-60.410673	-4.310706	12.112144
4	search_conducted_rate	year	-0.120567	driver_race	Asian	pearson_corr	-0.03903	-45.782649	-4.310706	11.809221
3	5 search_conducted_rate	year	-0.290574	state	RI	pearson_corr	-0.03903	-34.565004	-4.310706	11.403334
3	search_conducted_rate	year	-0.345375	state	WA	pearson_corr	-0.03903	-33.844530	-4.310706	11.368077
4	7 search_conducted_rate	year	-0.115382	driver_race	White	pearson_corr	-0.03903	-33.056239	-4.310706	11.327742
3	search_conducted_rate	year	-0.199765	state	IL	pearson_corr	-0.03903	-22.599687	-4.310706	10.526902

preliminary results in profiling data

Future Work

Choose File iris.csv

Regression

Diverging 5x5

To include more grouping cases:

- 1. augment the data with clustering for a given view
- 2. augment the data with quantiles (distretization of a variable)

New Detection Framework

- 1. Augment data with clusters
- 2. Augment with quantile labels
- 3. Compute aggregate trends for each view
- 4. compute subgroup trends for each categorical variable for each view
- 5. Compute distance between subgroups and aggregate trend for each view
- 6. Rank views

Linear Layout Tree Hierarchy (choose what to show detail)

preliminary results in profiling data

1. Integrate relaxations with visualization

2. Ranking ablation study