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ABSTRACT  
Researchers in fields such as sociology, demography and public health, have used data from social 
media to explore a diversity of questions. In public health, researchers use data from social media to 
monitor disease spread, assess population attitudes toward health-related issues, and to better understand 
the relationship between behavioral changes and population health. However, a major limitation of the 
use of these data for population health research is a lack of key demographic indicators such as, age, 
race and gender. Several studies have proposed methods for automated detection of social media users’ 
demographic characteristics. These range from facial recognition to classic supervised and unsupervised 
machine learning methods. We seek to provide a review of existing approaches to automated detection 
of demographic characteristics of social media users. We also address the applicability of these methods 
to public health research; focusing on the challenge of working with highly dynamical, large scale data 
to study health trends. Furthermore, we provide an overview of work that emphasizes scalability and 
efficiency in data acquisition and processing, and make best practice recommendations.  
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1. INTRODUCTION 
The wide use of social media sites such as, Facebook, Instagram and Twitter [1]  have resulted in an 
unprecedented availability of social data that may be used to study human behavior across research 
domains. While some sites collect demographic information on users (e.g., gender on Facebook), others 
(e.g., Twitter) do not. This lack of demographic data, which is typically available in more traditional 
sources such as surveys, has ushered in a new focus on developing methods for inferring these traits as a 
means of expanding Big Data research.  In this paper, we provide a critical assessment of existing 
approaches for automated detection of users’ demographic traits and address how public health 
researchers may adopt these methods when working with social media data. 
 
1.1 Social Media and Public Health Research 
Digital traces generated by social media users offer a wealth of data for public health research.  For 
example, studies using these data have focused on attitudes toward tobacco use [2]–[6] and vaccines 
[7]–[10], the onset of postpartum depression [11], sleep disorders [12], suicide risk [13], patient-
perceived quality of care in hospitals [14], the dynamics of infectious diseases [15]–[21],  neighborhood 
level trends in health, diet and weight loss [22], [23], mapping of the presence of food deserts [24], 



monitoring of foodborne illness  [25]–[28], the geographic distribution of fitness activity (specifically, 
cycling) [29], population representation [30], [31] etc.  
 
There are several benefits to using social media data for public health research.  First, social media data 
provide real-time updates on users’ thoughts, feelings and experiences, allowing researchers to track 
users’ attitudes and behaviors as they emerge. Both the population and individual-level scale of  these 
data create the opportunity to study behaviors that are difficult to assess through traditional means of 
data collection [32].   Second, because social media posts are unsolicited, users may report opinions and 
behaviors with greater fidelity than they would in the context of interviews or surveys.  Well-
documented forms of response bias such as, social desirability bias, present in the context of surveys and 
interviews [33], may be weaker within social media spaces. Factors that influence the emergence of 
response bias (e.g., a desire to withhold poor behaviors from someone conducting a study) may be 
absent or lessened within social media spaces. Third, compared to surveys and other traditional means of 
data collection, these data are low cost and the process of data collection can be automated.  
 
However, there are some limitations regarding the use of these data. For example, similar to traditional 
data streams, social media data are not always representative of the population of interest. While 
researchers have proposed methods for minimizing this limitation -  such as probabilistically adjusting 
the data to match the population under study [34] - identifying and quantifying Big Data bias is 
challenging.   This is partly due to a lack of demographic indicators - such as age, race and gender.  The 
ability to accurately and reliably detect users’ demographic traits would expand the use of social media 
as a research tool for social and behavioral sciences and public health. Additionally, linking 
demographic information to social media data would allow researchers to study disparities and trends in 
health-related attitudes and behaviors. It should be noted that there are privacy and ethical concerns 
associated with the use of social media data and the application of methods to infer user demographics, 
which we discuss in a later section. 
 
2. METHODS FOR AUTOMATED DETECTION OF USER DEMOGRAPHICS  
We focus on studies that address both profile-based social media spaces and blogs, with more emphasis 
on the former. Though blogs may be structured differently than social media sites – particularly in 
regard to the amount of personal data associated with users’ posts versus their profiles – the methods for 
demographics inference are often similar. Additionally, we exclude studies that draw upon the linguistic 
structure of languages other than English to build predictive models, as well as those that correlate 
known demographic data with site use.   
 
2.1 Data Extraction 
We queried Google Scholar during October of 2016 using combinations of methodological terms: 
“prediction,” “classification,” and “machine learning”; terms related to user traits: “age,” “race,” 
“ethnicity,” “gender”, and platform-related terms: “social media” and “Twitter” and “blog.” On average, 
each search returned 121,120 articles.  Within the first 20 pages of each search (ordered by relevance), 
an average of approximately 16 articles appeared relevant based on title and summary text. We then read 
through the abstracts of the potentially relevant articles and identified 60 studies that proposed methods 
for inferring or predicting users’ demographic characteristics. All identified studies were published 
between 2006 to 2016. For each study, we extracted the year of publication, a brief description of the 
methods used, if and how the researchers obtained ground truth data, which metadata fields were used 
for classification, the precise features extracted from these metadata fields, the intended audience of the 



paper (i.e. computer science, social science, etc.) and the demographic characteristic detected (i.e. age, 
race/ethnicity or gender) (See Appendix Table 1). 
 
2.2 Methods and Social Media Platforms 
The 60 selected studies focused on different social media platforms; 39 (65%) studies focused on 
Twitter, two on Facebook, two on Livejournal, one on Yelp, one on YouTube, and one on Pinterest. The 
remaining studies focused on other social media sites (e.g., Netlog, Fotolog) and blogs. Additionally, 44 
(73%) studies explored supervised or semi-supervised machine learning methods, one (2%) used 
unsupervised learning, three (5%) used facial evaluation (human or automated), and 11 (18%) used raw 
or adjusted data matching. The machine learning methods considered include support vector machines 
[35]–[45], naïve Bayes [43], [46], modified balanced winnow [47], neural networks [48], maximum 
entropy [49], naïve Bayes decision tree hybrid [50], [51], gradient boosted decision trees [52], [53], as 
well as regularized linear, logistic or log-linear regression [43], [54]–[59]. Additional details on these 
methods can be found in the cited articles and in [60].  
 
2.3 Predicted Traits  
Gender. Of the 60 studies selected, 47 (78%) predicted gender (see Table 1 in the Appendix). Gender in 
most cases was treated as a binary outcome. Most studies utilized users’ posts/tweets, profile colors, 
names, profile images, social network and preferences (e.g., likes on Facebook) independently or in 
combination to infer gender. The selection of features used for predicting gender assume that gender is 
heavily embedded in peoples' identity and may be implicitly expressed through factors such as speech, 
choices of colors in one’s profile [51], or stated interests [55]. Thus, unsupervised learning methods 
could be adequate for separating features distinct to the two gender classes [61]. 
 
Studies that utilized users’ posts proposed classification methods aimed at identifying gender differences 
reflected in linguistic patterns [38], [40], [49], [62]–[83].   In contrast, studies that leveraged users’ first 
names either used these data to link user profiles to ground truth survey data [84]–[86], or to develop 
and improve upon classifiers that incorporate other features [35], [38], [43], [50], [75], [83], [84], [87], 
[88]. Although some sites – such as Twitter – do not require users to provide a valid first and last name 
in their profile, this technique may still capture a large sample of users. Mislove et al. [84], for instance, 
found that 64.2% of Twitter users elect to include at least a first name in their profile, however about 
71.8% were males. The precision, recall and F1-score varied across studies, with some achieving values 
in the 90s.  However, few studies have focused on non-binary gender identity presentations. Bamman et 
al. [76] and Liu and Ruths [38] address this concept but additional work is needed. 
 
Age. We identified 29 studies that aimed to predict age (see Table 1 in Appendix). Similar to gender, a 
variety of features – including profile photos, users’ posts and names – have been used to infer age. 
Several of these studies use text features and supervised learning methods to predict exact numeric age, 
age category and/or life stage [44], [57], [58], [89]–[93]. Results of these studies indicated that age 
prediction is more challenging compared to gender.  Nguyen et al. [90] suggested that text-dependent 
classification techniques may have a tendency to conflate numeric age with life stage, and rely on coarse 
predictions of age such as “above or below 25” [39].    
 
Some studies have suggested that human labelers could be highly reliable when assessing a user’s age 
range or category [94], but accuracy of this method based on ground truth data has yet to be determined 
and the labeling process could be cumbersome and costly. Studies by An and Weber [95] and Zagheni et 
al. [96] utilized facial recognition software Face ++ (www.faceplusplus.com) –  a free facial recognition 



service that can estimate a user’s age within a 10-year span – and found promising results. However, 
further work is needed to assess the reliability, accuracy and best applications of facial recognition tools. 
 
Additionally, simple approaches - such as mentions of age or birthday within a user’s post or matching 
first names to trends in popularity over time [97] - are promising but not widely employed within 
existing literature beyond the development of a training dataset [44], [62]. For the former, the available 
data might be limited to teenagers or milestone birthdays, and the latter could be limited to popular 
names. 
 
Race and ethnicity. Of the papers that address race or ethnicity, eight used supervised learning 
approaches [35], [36], [52], [53], [53], [56], [83], [98], two used adjusted data matching [84], [99] and 
two relied on facial recognition [94], [95]. Some studies focused on user names or posts, or both to 
predict race or ethnicity [52], [53], [56], [83].  The classification performance among these papers – 
while promising – did not vary significantly. Three studies obtained maximum F-scores between 
approximately 0.70 and 0.76 [36], [53], [54], and two obtained accuracy between 0.78 and 0.84 [35], 
[36]. 
 
Certain profile features could potentially improve predictions of race and ethnicity.  First, profile photos 
appear to be a good indicator of race or ethnicity.  Pennacchiotti and Popescu [53]  for instance, obtained 
a higher precision (0.878) using profile photos to evaluate race, compared to a gradient boosted decision 
tree classifier that incorporated a combination of lexical features from users posts, and user activity 
measures (0.629). Second, user profile descriptions could improve methods for predicting race and 
ethnicity. For example, Chen et al. [36] observed that adding user descriptions into classifiers 
consistently improved accuracy, precision and recall for n-gram and name based models. Third, Chang 
et al. [86], and Mislove et al. [97] also found user location to improve predictability of  surnames,  and 
Mohammady and Culotta [56] used location as a feature for calibrating supervised learning models.  
 
One challenge associated with the prediction of race and ethnicity is the need to create a clear, bounded 
definition.  Racial and ethnic identity is complex and evaluations by others may not match an 
individuals’ self-identification. Most of the selected studies were vague and varied significantly in their 
definition of race or ethnicity. Pennacchiotti and Popescu [53]  claimed to predict ethnicity, but 
classified users as African American or not. Chang et al. [99] and Chen et al. [36] both used the term 
ethnicity to refer to a classification system that includes both racial and ethnic identities (black, white, 
Asian, Hispanic), and Mohammady and Culotta [56] used the same classification system but addressed it 
as race. Future work should directly address this challenge.  
 
2.4 Challenges 
A major limitation of existing approaches for demographic prediction in social media spaces is the 
unavailability of ground truth data. Demographic data is often difficult to collect due to factors such as, 
changes in social media membership, restrictions against solicitation within social media sites and low 
survey response rates [100]. This lack of ground truth information means that studies that rely on data 
matching cannot reliably assess predictive accuracy.  Studies that apply supervised learning techniques 
to infer the demographic characteristics of users must build training sets that include ‘true’ measures of 
the characteristics predicted.  Often these studies depend on name matching or manual labelling to 
evaluate user traits; approaches that are rough approximations and subject to human bias. A second 
limitation is in comparing the different studies due to inconsistency in the performance metrics 
emphasized. Several studies focused on accuracy, which although useful, is not always the best measure 
for performance. A combination of other measures, such as precision, recall and F-score would be best 



[66], [101]. Another limitation is the need to balance the pursuit of improving predictions with ensuring 
that methods proposed are useful and accessible to a variety of research domains.   
 
3. APPLICATION TO PUBLIC HEALTH RESEARCH  
As noted, the availability of demographic characteristics in social media data would broaden the use of 
these data for public health research. However, the previously discussed studies highlight two potential 
challenges to applying existing methods for inferring social media user demographics to large-scale 
studies and during time-sensitive public health events (such as, infectious disease epidemics). The first is 
efficiency - defined here as the speed at which data may be collected, processed, and analyzed. The 
second is scalability - defined here as the feasibility of applying methods to very large datasets 
consisting of several hundreds of thousands or millions of users.   
 
3.1 Scalability and Efficiency  
Large quantities of Twitter metadata are required to apply many of the methods described in previous 
sections. Although having detailed user data – including data from users’ posts and friendship networks 
– can improve the performance of demographic classifiers, the collection, storage, and analyses of such 
data can be costly.  For example, many of the studies reviewed in section two are text-dependent and 
rely on users’ posts – a strategy that Alowibdi et al. [51] described as “inefficient” and “not-scalable”.  
Additionally, Bergsma et al. [35] stated that while having information on Twitter users’ communication 
networks provide helpful details that amplify the predictive power of other profile indicators, this 
strategy is taxing on the Twitter API and may be unrealistic in some applications.  For smaller studies, 
(i.e. sample sizes in the hundreds or thousands of users), these techniques might be relatively simple to 
implement. In contrast,  those interested in broad topics such as US county-level exercise and wellbeing 
[102], may find these methods difficult or extremely time consuming to implement.  Furthermore, 
researchers interested in studying time-sensitive phenomena – such as disease outbreaks [103] – may not 
have time to collect timeline or network data for all users within their data sample.   
 
Challenges associated with scalability and efficiency may arise at several steps in the research process – 
including data collection, processing and analysis. For data collection, these issues may be linked to rate 
limits associated with the data collection tools. For example, Twitter’s public API which provides easy 
access to user metadata and tweets, includes measures designed to slow the collection of high volumes 
of data (see Table 1).  Most calls to the Twitter API are limited to 180 calls per 15 minutes. This means 
that only 180 users’ metadata can be gathered within 15 minutes. The rate limit for user timelines is 
higher – 900 calls per 15 minutes – but each call may return only a portion of the timeline. To access 
data on users’ ties, one must first pull the IDs of friends and followers, and then link metadata to these 
IDs – a time-consuming, two-step process.  Overall, though it may be appealing to include fine-grained, 
comprehensive, detailed information about the user, if the dataset contains tens of thousands or millions 
of users this process could take days, weeks or months.  When studying time-sensitive health processes, 
this delay could be problematic.  
 
In data processing, the challenge of scalability and efficiency could refer to the time and computing 
power needed to extract and organize information from these data. While the exact number of posts 
needed to produce quality predictions may vary from one study to another, some report collecting as 
many as 1000 tweets per user [58], which could lead to the generation of a very large dataset.  For 
example, the study on vaccine sentiments by Salathé and Kandelwal used a sample of 101,853 twitter 
users. If we collected 1000 tweets per users, this would result in a dataset of over 100 million tweets. 
Extracting and interpreting features from these data – including breaking these data into unigrams or 



identifying sociolinguistic indicators – an otherwise simple task – may become cumbersome when 
processing a dataset of this size. 
 
Furthermore, text-dependent predictive models tend to be high-dimensional.  Several of the models 
discussed in selected studies used unigrams as features, which present unique computational challenges. 
Burger et al. [30], for instance, developed a classifier that consists of 15.6 million features.  These high-
dimensional models not only require intense computational power to execute, but run the risk of 
overfitting. 
 
Table 1. Scalability Illustrated: Gathering Data from Twitter 

Feature API Call Calls per 15 
Mins. 

Data Returned 

User Profiles GET users/show 
GET users/lookup 

180  
1 user per call 

Profile field data (user name, location, 
description, profile image, etc.) 
Profile aesthetic data (background color, 
banner image, etc.) 
Metadata for most recently posted tweet. 
Activity measures (location, status count, 
network counts) 

User Timelines GET 
statuses/user_timelines 

900  
32 tweets per call 

Tweet text. 
Tweet sharing statistics. 
Metadata for tweet poster. 

User Network GET followers/ids 
GET friends/ids 

15  
1 user per call 

ID values of friends 
ID values of followers 

 
 
3.2 Efficient and Scalable Approaches to Demographic Prediction 
A number of studies have attempted to identify user demographics without using computationally 
intense methods and metadata (Table 2).  Some of these studies rely on detecting explicitly shared 
information (i.e. stating one’s age) or matching metadata to ground truth information. For example, 
Mislove et al. [84] inferred US-based Twitter users’ gender by matching first names to census data.  
Sloane et al. [104] determined user age by finding mentions or references to age within users’ profile 
descriptions (e.g. searching for phrases such as “years old”).  Longley, Adnan and Lansley [86] 
proposed a process of parsing user names to extract embedded information on gender and ethnicity. The 
primary advantages of using a data matching approach is that it depends on simple, often easy to capture 
user information and allows researchers to categorize users with a high degree of certainty. However, 
this method excludes users who elect not to share directly identifiable information such as, real name or 
age. Longley and colleagues, for example, found that about 68% of users in their sample had an 
identifiable first and/or surname, and that only 47% of users were accurately classified as male or female 
using this metadata [86].  Though relying on this method may produce incomplete and biased data, 
researchers suggest that these techniques are effective for capturing a large swath of social media users. 
 
For traits, such as race/ethnicity, the ground truth data matched to simple user metadata – such as names 
-  may be overrepresented by a majority group.  Some studies have proposed methods for overcoming 
this limitation.  Chang et al. [99] and Mislove et al. [84] used Bayesian estimation to predict users’ 
ethnicity given: a.) racial/ethnic distribution of the website and b.) distribution of first and last names 
within each race/ethnicity as indicated by census data. Oktay, Firat and Ertem [97] built upon the work 
by Chang et al. [99] by expanding their methods to accommodate the detection of age.  
 



There is also a small body of work that relies on text-independent machine learning techniques for 
classifying users. Using Naïve Bayes Decision Tree classification, Alowibdi, Buy and Yu [50], [51] 
utilized profile colors to detect user gender with 71% accuracy and phonemes/n-grams within user 
names to predict gender with 83% accuracy.  Bergsma et al. [35] used location and name metadata to 
predict gender and race. Features in their model consisted of the presence or absence of location and 
name features, the n-gram length of these features, and a cluster ID value based on users’ names and 
communication. Though the presence of the cluster ID value improved their classifier, they obtained 
high accuracy for predicting gender (89.5), and race (82.4) without these features as well. Kosinski et al. 
[55] categorized users on Facebook according to what and who they “like.” Whereas this may be 
difficult to replicate in contexts such as Twitter, where “likes” may be analogous to “follows,” which 
requires the collection of network information, this strategy may be used within social media contexts 
structured similarly to Facebook.  In contrast to supervised learning approaches, Vicente et al. [43] 
applied fuzzy c-means clustering to user names to predict user gender with up to 96% accuracy 
 
Finally, work using automated  facial detection [95], [96]  and manual facial classification (e.g., 
employing workers on Amazon’s Mechanical Turk) [94] has provided promising estimates of Twitter 
users’ age, race and gender.  While the scalability of crowdsourced methods is contingent upon the 
budget of the researcher, it nonetheless demonstrates efficiency as it requires only one piece of user 
metadata to process.  Furthermore, additional work is needed to assess the ground truth accuracy of 
these methods. 
 
There is obviously an imbalance in methods available to predict race/ethnicity and age versus gender.  
The latent factors that drive gender identity expression are strong and may manifest in a variety of ways, 
including seemingly peripheral factors such as profile color [51].  Whereas existing work has found a 
number of efficient and scalable gender-classification methods, the same cannot be said of race/ethnicity 
and age.  As was described in section 2.2, the automated detection of age and race/ethnicity presents 
unique challenges. Racial identity is complex and may not match perceived race, and numeric age may 
be conflated with life stage [93]. Further exploration is needed to determine how these challenges can be 
overcome with less costly user metadata. 
 
 
Table 2. Papers that Describe Scalable Approaches  

Name Characteristic 
detected 

Method summary 
(short) 

Metadata used N 

Sloan, L., et al. (2015) [104] Age Data detection  User descriptions  32K 
Longley, P. A., et al. (2015) [86] Age, Gender, 

Race/Ethnicity 
Data matching  User names  230K 

Zagheni, E., et al. (2014) [95]   
An and Weber (2016) [95] 

Age, Gender, 
Race/Ethnicity 

Facial evaluation 
(automated w/Face++) 

Profile photos 345K 

Chang, J., et al. (2010). [99] Age, 
Race/Ethnicity 

Bayesian estimation User names  78K 

Alowibdi, J. S., et al. (2013) [51] 
Alowibdi J. S., et al. (2013) [50] 

Gender Supervised 
classification  
(Naïve 
Bayes/Decision-Tree 
Hybrid). 

Profile colors/User 
names  

53K/1
80K 

Mueller, J., & Stumme, G. (2016).  [88] Gender  Supervised 
classification (SVM 
algorithm with radial) 

User names (not 
handles) 

7K 



 
4. DISCUSSION  
Researchers have sought to expand upon the use of social media data for research by developing 
methods for automated detection of key demographic features of users.  This research is driven by the 
assumption that users leave behind clues regarding their offline identities – either implicitly or explicitly 
– and that it is possible to develop techniques to identify important demographic clues. This research has 
the potential to create opportunities to assess population representation and study disparities in social 
media data.  Knowing key demographic information about users could, for instance, help researchers 
better understand gender, race or age-based inequality in information access or attitudes toward current 
events.  
 
The existing approaches for demographics prediction have many advantages and caveats. Many simple 
methods have been shown to perform well in predicting age, gender and racial/ethnicity under certain 
assumptions. However, limitations exist in the adaptation of these methods to specific domains, e.g. 
public health, where studies might require large-scale datasets and may be time sensitive. The methods 
reviewed often emphasized the need to collect detailed user information to improve classifier 
performance without addressing issues in efficiency and scalability, which limits domain specific 
applicability. 
 
4.1 Methodological Suggestions 
First, we suggest that researchers develop an ensemble of methods appropriate for their data that draw on 
information-rich yet text-independent metadata. Second, methods that uncover and utilize latent identity 
attributes hidden within profile-specific metadata need further development.  Profile metadata is rich and 
easy to access, and mining this resource may lead to the development of scalable predictive models.  This 
is particularly needed for difficult to classify attributes such as race/ethnicity and age. 

 
Additionally, we strongly recommend collaboration between computer scientists developing these tools 
and statisticians and domain specific, public health and social scientists who may use them to a.) ensure 
that methods used are appropriate for the data analyzed and b.) researchers understand how the data 
were generated and how this may impact the results of their research. For instance, particular 
demographic groups may be more or less likely to share specific types metadata.  Social scientists may 
be consulted to better understand these biases. 
 
We also encourage the development of open source tools aimed at demographic detection for large 
scale, time sensitive public health data. Those developing and improving methods for efficiently 
processing and extracting key demographic variables from social media data may consider making these 
tools available for other researchers to utilize and extend.  The availability of such tools may help render 
data processing a more accessible, standardized and easily replicable process. 

Vicente, M., et al. (2015).  [43] Gender  Unsupervised 
classification (fuzzy c-
means clustering)  

User names  296K 

Bergsma, S., et al. (2013). [35]   Gender, 
Race/Ethnicity 

Supervised 
classification (SVM 
algorithm) 

User location, user 
name  

126M 

Oktay, H., et al. (2014). [97] Race/Ethnicity Bayesian estimation User names 100K 
Kosinski, M., et al. (2013). [55] Age/Gender Supervised learning: 

OLS/logistic 
regression 

User ‘likes’ on 
Facebook  

58K 



 
4.2 Privacy and Ethical Concerns 
We acknowledge that there are privacy and ethical concerns associated with the use of social media data 
for research (noted in several publications [105]–[108]) and the development of tools for inferring user 
demographics.  A major concern is the treatment of human subjects since research subjects no longer 
‘participate’ in studies in a traditional sense [108]. This requires researchers to rethink how to implement 
standard ethical practices such as informed consent and anticipation of risks and harms. Currently, data 
ownership and within-site privacy guidelines help determine some research permissions. However, 
researchers should consider obtaining IRB approval for digital datasets [106], not linking social media 
data to other online information, and respecting the context – both cultural and situational [108] – in 
which the data were generated. 
 
Ethical data use should also be considered in the publication and implementation of research results. As 
Boyd and Crawford [107] suggest, the practice and dissemination of Big Data research raises important 
questions about truth, power and control. Researchers may address these questions thoughtfully not only 
within the context of data collection and use, but in regard to study results and the relationship between 
these results and the perpetuation of inequality.  It is important that researchers balance respect for 
privacy with research transparency and reproducibility, and ensure that findings are correct, reliable and 
interpretable for the public [105]. 
 
Given the breadth of ambiguity regarding the ethical use of social media data we urge researchers who 
use these data to closely follow the rapidly changing ethical landscape of social media data use, and to 
exercise beneficence when engaging in data use that does not fall neatly within existing institutional 
review board guidelines, or for which standard data management and analysis strategies do not exist. 
 
5. CONCLUSION  
The use of social media data offers unique, new opportunities to researchers interested in studying 
public health. Sites such as Twitter provide access to unsolicited attitudes on health topics and reports of 
health behaviors that are updated in real time. However, one limitation of these data is the usual lack of 
key demographic indicators – such as age, race and gender. Several studies have proposed methods for 
automated detection of these traits, but much of this work requires the collection of costly user metadata.  
The goal of this paper was to render this work more accessible to public health researchers interested in 
using large-scale and time-sensitive social media data by highlighting methods that do not rely on costly 
metadata and promote scalability and efficiency.  The use of these methods could allow researchers to 
study demographic trends in health behaviors and attitudes toward topics of health or healthcare across 
broad geographic regions and within marginalized groups.  Understanding these patterns could be of 
interest to researchers and policymakers interested in tracking diseases or understanding and alleviating 
health disparities – particularly in regard to poorly understood or stigmatized topics. 
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