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The amount of text data has been growing exponentially in recent years, giving rise to automatic informa-
tion extraction methods that store text annotations in a database. The current state-of-the-art structured
prediction methods, however, are likely to contain errors and it is important to be able to manage the overall
uncertainty of the database. On the other hand, the advent of crowdsourcing has enabled humans to aid
machine algorithms at scale. In this article, we introduce pi-CASTLE, a system that optimizes and integrates
human and machine computing as applied to a complex structured prediction problem involving Conditional
Random Fields (CRFs). We propose strategies grounded in information theory to select a token subset, for-
mulate questions for the crowd to label, and integrate these labelings back into the database using a method
of constrained inference. On both a text segmentation task over academic citations and a named entity
recognition task over tweets we show an order of magnitude improvement in accuracy gain over baseline
methods.
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1. INTRODUCTION

In recent years, there has been an explosion of unstructured text data from social
networks like Twitter and Facebook, within enterprises via emails and digitized doc-
uments, and across the Web. Information Extraction (IE) over large amounts of text
is important for applications that depend on efficient search and analysis, such as
question answering, trend analysis, and opinion mining. Various types of structured
information that can be extracted include content annotations from bibliographic cita-
tions and entity relationships from news articles.

Automatic information extraction can be viewed as a structured classification prob-
lem using statistical machine learning techniques. Given an input sentence x, the
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output label y has a rich internal structure. An example is a probabilistic sequence of
annotations for each word in the sentence. This approach of sequence learning has been
the focus of much research into automatic IE for tasks such as Text Segmentation (TS)
or Named Entity Recognition (NER). The most common and state-of-the-art sequence
model for these tasks is the linear-chain Conditional Random Field (CRF) [Lafferty
et al. 2001].

Because of the inherent uncertainty and fallibility of many machine learning algo-
rithms, recent work has turned to the incorporation of a human element for correcting
errors or validating output of machine results. Crowdsourcing platforms like Amazon
Mechanical Turk (AMT) have made it possible to utilize human computation efficiently
and cheaply. Nevertheless, human annotations are still much more expensive and time-
consuming compared to algorithmic labeling [Mozafari et al. 2014] and care must be
taken to optimize the work administered to the crowd.

Previous work in utilizing a hybrid of traditional and crowd computation for struc-
tured classification includes entity resolution [Mozafari et al. 2014], web table [Fan
et al. 2014] and ontology alignment [Sarasua et al. 2012], and probabilistic query
processing [Ciceri et al. 2016]. The main research challenges are optimizing data selec-
tion and question construction. Data selection involves targeting the most significant
human contributions given a fixed budget of questions. Question construction is con-
cerned with extracting the maximum possible information out of each question and is
intimately connected to the data selection problem.

There has been little work in combining human and machine computation for text
classification due to the complexity of the structured prediction models. Data selection
and question construction are more difficult because they have to reason with the
internal structure of the probabilistic graphical models.

In this article, we build on existing work to develop an end-to-end system that not
only tackles both of these selection problems, but fully integrates the crowdsourced
response back into the machine model. Our system, pi-CASTLE, is a crowd-assisted
Statistical Machine Learning (SML)-based IE system that uses a probabilistic database
to execute, optimize, and integrate human and machine computation for improving
text extraction and processing. pi-CASTLE initially employs a linear-chain CRF to
annotate all input text data. In contrast to other IE systems, however, pi-CASTLE
uses a probabilistic data model to store IE results and manage data cleaning. It has the
ability to automatically query humans through the deployment of Amazon Mechanical
Turk Human Intelligence Tasks (HITs) to correct the most uncertain and influential
tokens and integrate their responses back into the data model.

By allowing trained algorithms to do most of the work and focusing on humans only
in the “last mile,” pi-CASTLE achieves an optimal balance between cost, speed, and
accuracy for IE problems. We address three challenges in the design and implemen-
tation of pi-CASTLE: the probabilistic data model, selection of uncertain entries, and
integration of human corrections.

First, in order to manage uncertainty associated with classification results and do
data cleaning from within the database, a probabilistic data model and system is
needed. We use the model described in Wang et al. [2010b], storing both uncertain re-
lations and probabilistic models as first class objects. We also implement User-Defined
Functions (UDFs) for statistical inference, question selection, and uncertain data inte-
gration over this probabilistic data model to connect the SML and crowd components
in pi-CASTLE.

The data cleaning process entails automatically evaluating tokens in terms of their
information value to the rest of the database and generating questions based on the
highest scoring tokens to be pushed to AMT. Information value of each token is de-
termined by a set of information functions that optimize different metrics over the
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database. pi-CASTLE uses concepts from information theory to select either the most
uncertain tokens or the ones likely to have the most influence on other tokens. This is
a technically challenging task as tokens, represented as nodes in a graphical model,
are not independent, but adhere to the dependence properties modeled by the CRF.
Optimal selection is NP P P-hard in general [Krause and Guestrin 2009] and we de-
velop a set of approximate scoring functions. We choose to perform data cleaning at the
token level instead of the sentence or document level in order to exploit a phenomenon
known as correction propagation [Culotta et al. 2006], wherein influence can spread
throughout the graphical model from a single observation. This allows pi-CASTLE to
maximize the efficiency and value of the data cleaning process.

pi-CASTLE is also able to construct questions in such a way that they maximize
the impact on selected tokens. By exploiting redundancies in token usage on a global
scale across documents, pi-CASTLE is able to map many tokens to a single question to
achieve the greatest “bang for our buck.” As an example, if the crowd is able to correctly
resolve the token Obama as a reference to a PERSON, then all entries containing Obama
in a particular context can be updated to reflect this new information. This directly
improves on many existing systems [Kondreddi et al. 2014] that correct at best a single
entry at a time.

The final design challenge is how to adequately handle evidence that has been col-
lected from the crowd. Because every question posed costs financial and temporal
resources, a central theme of pi-CASTLE is getting the most impact out of every
question. Because in a relational learning task the output of one example may influ-
ence that of “nearby” examples, we develop a constrained inference framework that
can use answers provided from the crowd to improve the results of other entries in
the database. Understanding Obama is a person may improve the machine’s decision
making on other related tokens such as Barack.

One key application of this work is in knowledge transfer of models from one domain
to another. Many pretrained off-the-shelf models give poor results when applied to a
new domain or data that follow a different distribution and are expensive or impossible
to retrain. We demonstrate in our experiments pi-CASTLE’s ability to optimize the cost
of this knowledge transfer process through appropriate balancing of the human and
machine components.

The following are the key technical contributions of this article:

—We design and implement a crowd-assisted IE system, pi-CASTLE, based on a CRF
that uses a probabilistic database as a foundation to execute, optimize, and tightly in-
tegrate machine computation over CRF models and human computation over crowd-
sourcing services.

—We develop novel approximate information theoretic techniques that can automat-
ically generate AMT questions to maximally reduce uncertainty and errors for IE
transfer tasks compared to a set of baselines. Using data from multiple citation
datasets for text segmentation and newswire and Twitter data for named entity
recognition, we show that these techniques lead to orders-of-magnitude fewer ques-
tions, reducing cost in improving the overall accuracy of extractions.

—We demonstrate the performance benefit of performing constrained inference and se-
lecting questions in such a way as to maximize this benefit. Probabilistic integration
of crowd answers can achieve up to a 33% increase in F1 compared to not running
constrained inference.

The article is summarized as follows. Section 2 compares and contrasts similar sys-
tems to pi-CASTLE. We give an overview of the pi-CASTLE system in Section 3. Sec-
tion 4 details the CRF model at the heart of the system and how it performs learning
and inference. Sections 5 and 6 cover our techniques for performing question selection
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and integration, respectively. Our experiments can be found in Section 7, while Sec-
tion 8 contains our Conclusions.

2. RELATED WORK

Crowdsourcing has been employed in many different systems as a tool for improving
database construction and data processing. Humans can be used for common query
operations such as sorts and joins [Marcus et al. 2011] or ranking and grouping data
[Davidson et al. 2013]. A crowd can also be used to fill in queried fields that may be
missing [Franklin et al. 2011; Kondreddi et al. 2014]. These systems are deterministic
and act over the entirety of missing data without regard to importance or budgetary
concerns.

pi-CASTLE, on the other hand, is primarily concerned with managing an existing
database containing uncertain data and prioritizing the most informative corrections.
There are a number of systems that attempt a similar problem in completely different
domains. Ciceri et al. [2016] optimizes a Top-k ordering of videos and images by focusing
users to prune a tree of possible orderings. Fan et al. [2014] probabilistically extracts
web tables and tasks users with aligning both the “most difficult” and “most influential”
columns in the table. Zhang et al. [2015] is also concerned with crowdsourcing uncertain
database fields, but under a simpler set of assumptions that do not incorporate the
relational nature of the underlying probabilistic model.

Crowdsourcing has also been applied in similar domains of citation extraction and
named entity recognition. Culotta et al. [2006] applies mutual information to selecting
tokens from citations, but does not discuss it in a system perspective that scales to the
crowd or apply any batching of human edits to multiple citations. They also use a differ-
ent approximation of mutual information. The relationship among task features, crowd
preferences, and crowdsourcing performance for hybrid NER systems particularly as
it applies to tweets is explored in Feyisetan et al. [2015]. pi-CASTLE differs by focus-
ing on the role machines play in the probabilistic selection and integration process.
Improving the crowdsourcing specifics are outside the scope of this article. A human-
machine hybrid NER system is discussed in Braunschweig et al. [2013], but their goal
is to decompose individual examples into either automatic-only or crowd-only and use
a rule-based automatic extraction method. By contrast, pi-CASTLE employs statistical
machine learning extraction techniques with information-theoretic selection mecha-
nisms and example-batching among questions to create an optimal human-machine
hybrid extraction system.

3. SYSTEM OVERVIEW

Figure 1 outlines the basic architecture of the pi-CASTLE system, which can be con-
ceptualized into four main components: (1) CRF Extraction and Inference, (2) Question
Selection, (3) HIT Management, and (4) Human/Machine Integration. The arrows chart
the flow of data within and between different components. Overall, data flows through
the four components in order. First, the CRF model performs automatic text extrac-
tion and labeling. Both the extractions themselves and their associated uncertainties
are stored in a probabilistic database. Next, a set of questions is generated as some
function of the data uncertainty and given budget. The HIT manager formulates and
pushes these questions to the crowd and retrieves the answers. Finally, the Turker
answers are integrated back into the database as a set of constraints on the inference
that improve the initial results.

In this section, we briefly outline each of the system’s main components and how they
are related, as well as how data is specifically stored in the data model through the
use of the running example in Figure 2. While we use existing techniques for (1) CRF
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Fig. 1. Architecture of the pi-CASTLE system.

Fig. 2. An example CRF model and the associated storage format in the database. Observed nodes cor-
respond to token values. Hidden nodes are probabilistic labels that contain a distribution over the label
space.

Extraction/Inference and (3) HIT Management, we develop novel techniques for (2)
Question Selection and (4) Human/Machine Integration in Sections 5 and 6.

3.1. CRF Extraction and Inference

The initial machine approach to the structured prediction problem is handled by the
components associated with the CRF, including preprocessing, feature extraction from
the text, and model learning from a training set. The CRF model infers the hidden
labels associated with each text token and stores the results in the database.

Unstructured text is treated as a set of documents or text strings D. Each document
d ∈ D has a substructure comprising a set of tokens td

i , where i ∈ {1, . . . , N} and N is the
length of the string (document). For efficient and persistent data storage and retrieval,
we store the tokens in a probabilistic database, adopting and expanding upon the data
model outlined in Wang et al. [2010a]. Each unique occurrence of a token, identified by
a text-string ID (strID) and position (pos), is stored as a record in the relational table
TOKENTBL. A TOKENTBL has the following schema:

TOKENTBL(strID, pos, token, labelp).

An example is shown in Figure 2. The final attribute labelp is probabilistic and comes
from the CRF inference process. It represents a distribution over the possible labels
and their associated marginal probabilities. These probabilities will be updated after
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incorporating crowdsourced data acquired from Amazon Mechanical Turk. The CRF
model is described in more detail in Section 4.

3.2. Question Selection

The main contribution of pi-CASTLE is the ability to take an uncertain database as
constructed using the CRF components and automatically improve it by pinpointing
likely errors. In order to work within the constraints of a fixed budget, we need to
select the most information-dense fields to correct. As we describe in more detail later
in the article, the relational structure of our model enables token inferences to affect
other tokens through their dependencies. Additionally, highly redundant tokens have
common contextual patterns across documents that allow fields to be mapped using
the same human inferences.

Using these two notions, we develop a way to score each token in terms of its infor-
mation density and select those most likely to have the strongest improvement on the
database. Figure 4 shows a table view that includes the maximum likelihood label for
each token and a score based on some scoring function. The goal of the Selection module
is to evaluate tokens in such a way that their correction has a maximum influence on
the database after integration.

Section 5 examines two different optimization functions on the database and the
information functions that derive from them. One optimizes the reduction in uncer-
tainty and suggests picking those tokens with the highest marginal entropy. The other
maximizes the influence between the crowdsourced fields and the remaining fields and
results in a mutual information calculation between tokens and their neighbors. In
either case, we incorporate clustering into the scoring function so the most common
errors have a higher weight in their selection and individual questions can be applied
to many tokens simultaneously.

3.3. HIT Management

The HIT Management component has the responsibility of taking selected tokens, con-
verting those tokens into questions in the form of HITs, and posting them onto Amazon
Mechanical Turk. Part of the focus of pi-CASTLE is on reducing the problem of annotat-
ing an entire text string to annotating only specific tokens at a time. The simplicity of
this task avoids unneeded redundancy and translates into a simple question interface
less prone to human error.

An example interface is shown in Figure 3. The entire text document (in this case
a citation) is shown with the query token bolded. Users select from the set of all
labels the one they believe belongs to the bolded token. The brevity of each question
allows bundling of multiple token annotations into a single HIT. For the time and cost
of labeling a single unstructured text document from scratch, pi-CASTLE is able to
acquire labels to the same number of super information-dense tokens which will have
a much larger impact on improving the quality of the database.

Specific details of the AMT marketplace such as the price, length of posting, and
number of Turkers assigned to each HIT are outside the focus of this article. In practice,
they would be set according to the constraints of the user.

3.4. Human/Machine Integration

The final component takes the human response to selected questions, aggregates their
results, and integrates them into the final database. pi-CASTLE is agnostic to the
method by which crowd results may be combined and any method that derives a single
answer from a pool of possibilities may be employed. We found majority voting worked
well enough to be useful due to high worker ability on text annotation tasks. For more
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Fig. 3. Sample Mechanical Turk HIT Interface.

Fig. 4. Database view of the process of data selection and integration. An information function φ maps each
token to a selection score. Here, because “Cyril” is an uncommon name, the machine confuses it as a Title.
It has the highest scoring information function so it is sent to the crowd for labeling where it is confirmed to
be an Author. Constrained inference propagates this information, changing “Fonlupt” to an Author as well.

difficult tasks with variable worker ability, pi-CASTLE is modular enough to utilize
any number of quality control mechanisms as found in Sheshadri and Lease [2013].

The key insight that distinguishes pi-CASTLE from other crowdsourced data clean-
ing systems is the treatment of new evidence as observed variables in the conditional
random field inference process. CRF Inference finds a global best-fit path through the
label space for each document. Fixing certain fields to the crowdsourced label con-
strains the total label space and has a direct influence on tokens in the neighborhood
of the observed one. The Constraints module stores the crowdsourced evidence and is
used in subsequent inference passes over the data. The specific details of constrained
CRF inference are detailed in Section 6.

Figure 4 shows a scenario in which identifying and correcting one node from a Title
to an Author allows the machine to infer that the following token is also likely to be an
Author. pi-CASTLE chooses selections wisely so as to maximize this degree of influence.
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4. MODEL

The particular model that pi-CASTLE uses for learning and inference is the linear-
chain conditional random field, an undirected discriminative graphical model com-
monly used in natural language and speech processing tasks. Here we utilize a CRF to
perform text annotation and discuss how the internal structure of the model is modified
to integrate human responses coming from the crowd.

4.1. Conditional Random Fields

Conditional random fields (CRFs) [Sutton and Mccallum 2004] are a popular framework
in natural language processing that use undirected graphical models for structured
classification. Given a set of observed input random variables O, a CRF encodes a
probability distribution over a collection of latent random variables H using features
of the input space. The benefit of CRFs compared to traditional classifiers is the ability
to utilize multiple overlapping features of the input space. The most common structure
is to link the input variables into a single chain. The first-order Markov assumption
makes it so each output variable is dependent only on the current observation and the
previous label, akin to a Finite State Machine (FSM).

Let O = 〈O1, O2, . . . , OT 〉 be a set of input variables, such as word tokens appear-
ing in sequence in a document. There is a set of corresponding output variables
H = 〈H1, H2, . . . , HT 〉 that represent a sequence of states for each input. For a text
segmentation task, each Ht will denote the class of the word (such as Title or Au-
thor). The full CRF output defines a joint probability distribution over all possible
state sequences as

p(H|O) = 1
Z

exp

⎧⎨
⎩

T∑
t=1

J∑
j=1

λ j f j(Hi, Hi−1, Oi)

⎫⎬
⎭ , (1)

where each f j(Ht, Ht−1, Ot) is a feature function over its arguments, λ j is a weight
for each feature, and Z is a normalization factor over all states. The features encode
the Markov assumption in that each feature concerning Ht is only dependent on the
prior state Ht−1, given the observation. Common features include syntactic and lexical
properties as well as colocation (e.g., two Title states are more likely to appear next to
each other).

Figure 2 shows an example CRF model over a subset of a citation string. The shaded
nodes are the input variables and unshaded nodes the output states. The possible
states for each token are Hi = {Title, Author, Conference, ISBN, Publisher, Series,
Proceedings, Year}.

Maximum a posteriori training of the model parameters is usually done through hill-
climbing methods such as gradient ascent or limited-memory BFGS [Liu and Nocedal
1989] using a labeled training sample. Inference can refer to either calculating the max
probability assignment H∗ = argmaxH p(H|O) using the Viterbi algorithm [Forney
1973] or the marginal probabilities p(Hi|O) of each output node using the Forward-
Backward algorithm [Rabiner and Juang 1986]. The computational complexity of the
Forward-Backward algorithm used for training is O(T L2NG), where T is the length of
the document, L is the number of labels, N is the number of training documents, and
G is the number of gradient computations. For inference, both Viterbi and Forward-
Backward have a complexity of O(T L2) for each document.

Understanding the Viterbi algorithm is crucial to understanding how pi-CASTLE
incorporates crowdsourced evidence back into the system. Viterbi uses dynamic pro-
gramming to avoid searching over the exponentially numerous global sequences H. Let
Hi

t be the ith label of token t and δt(Hi
t ) be the probability after having observed nodes
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Fig. 5. Example matrix of labels and tokens and a maximum likelihood path through the label space. The
machine initially gets the citation wrong and incorrectly identifies the tokens “Cyril” and “Fonlupt” to be
part of the Title when they should be labeled Author. Dark outer circles represent the true token labels.

O1, . . . , Ot that Ht has label i. The Viterbi algorithm operates by the induction step:

δt+1(Hi
t ) = max

Hi′
t

⎡
⎣δt(Hi′

t )exp

⎛
⎝

J∑
j=1

λ j f j(Hi′ , Hi, Oi)

⎞
⎠

⎤
⎦ . (2)

The induction step fills out a dynamic programming table that can be backtracked
to recover the maximum likelihood state H∗. The algorithm can be understood as
traversing through a T × L matrix, where L is the number of labels. This is visualized
in a truncated form in Figure 5. Here, the arrows represent the maximum likelihood
“path” through the grid. The next section gives insight into how crowdsourcing can be
used to modify this path.

4.2. Constrained Conditional Random Fields

Constrained Conditional Random Fields (CCRFs) have been previously studied in the
context of interactive information extraction [Kristjansson et al. 2004; Culotta et al.
2006] where the goal is to solicit feedback from a human to improve a CRF-based
information extraction model. After incorporating the newly observed evidence back
into the model, the inference is performed a second time using a constrained version of
Viterbi.

Constrained Viterbi modifies Equation (2) such that H∗ is constrained to pass
through a particular node Hl

t in the H grid, given some label l supplied for the to-
ken t. This is implemented by setting all δt(Hi

t ) to 0 if i �= l. Because Viterbi defines the
optimal path recursively and the CRF features are dependent on adjacent labels, the
constraint propagates to other nodes in the grid and results in different predictions for
those nodes. Culotta et al. [2006] calls this phenomenon correction propagation.

5. QUESTION SELECTION

In this section, we formalize the question of optimally posing questions to the crowd
by analyzing two key selection strategies in the context of which global optimization
functions they minimize. This leads us to strategies for either maximizing the uncer-
tainty reduction of the system or the influence of the selected nodes. To maximize the
information density of each question, we describe a contextual clustering technique
that folds multiple uncertain examples into a single question.
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5.1. Question Selection Problem

A general probabilistic graph can be described simply as tuple G = (V, E, P) that
consists of nodes V, edges E, and a probability distribution P over those nodes and
edges. In general, P may denote either a directed Bayesian network or an undirected
Markov random field. Assume the V nodes are partitioned into a set of observed nodes
O and hidden nodes H such that O ∪ H = V. By virtue of having learned a model,
there exists some P that can be used to make predictions on the distribution of values
of H. Assume also that we are given a budget of K observations to make on the hidden
nodes, after which we have a new partition between the observed hidden nodes Y,
where |Y| = K, and the still unobserved hidden nodes X, such that X ∪ Y = H. While
this article focuses on a specific probabilistic graph known as a CRF, the problem we
are posing is a more general one applied to any probabilistic graph.

Question Selection Problem: Given a budget of K = |Y| questions, how do we pose
questions to the observer in such a way that the resulting observations Y minimize the
prediction error on the remaining hidden nodes X?

The mapping of questions to observable nodes need not be one-to-one and the problem
decomposes into using questions to trade off both the largest mapping from a question
to many nodes and the individual information density of those nodes. The former is
related to the content and redundancy of connected observations and the latter deeply
related to the structure of the graph.

The Question Selection Problem is similar to that found in active learning where
select examples are chosen from a pool of unlabeled data to be annotated based on
some querying strategy. Traditionally these examples are Independently and Identi-
cally Distributed (IID) and take no account of the causal influence of one example’s
label on another. While active learning has been applied to the structure prediction
domain [Settles and Craven 2008; Cheng et al. 2008], the examples primarily consist
of individual independent graphs and in each case the entire graph is labeled. This
reduces the problem to labeling a set of IID examples. The Question Selection Problem
is concerned with labeling individual hidden nodes in a larger graph structure. Given
that most examples contain sparse labeling errors, we hope to achieve maximum effi-
ciency in terms of financial and temporal cost while also being more amenable to AMT’s
microtask framework.

Our approach to solving the Question Selection Problem is to phrase it as an opti-
mization function g(X, Y, O) over the graph. From the collection of hidden nodes H, we
seek to find the set of new observations Y that maximizes g(X, Y, O).

Y∗ = argmax
Y

g(X, Y, O). (3)

We discuss two possible optimization functions in the succeeding sections and approx-
imate solutions to solving them. A key requirement in scaling to large graphs is the
ability to evaluate and rank nodes independently by some information function φ such
that the optimal Y∗ are just the Top-k scoring nodes φ(Yk). These information functions
have been previously published as heuristics in Goldberg et al. [2013] and in this article
we put them on a more sound theoretical footing.

Our primary purpose is to establish and make progress on the Question Selection
Problem as it pertains to text-based linear-chain CRFs, which have wide applicability
in natural language processing applications.

5.2. Uncertainty Reduction

Most classifiers give as output both a class prediction and confidence score. The
confidence score measures how difficult the machine finds the problem to be and
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subsequently how confident it is in its output. It is reasonable to assume then that
for properly trained classifiers there is some correlation between prediction accuracy
and confidence. For structured prediction problems, the confidence is typically renor-
malized as a probability distribution over all possible joint distributions of the hidden
nodes. One strategy for improving prediction performance is to try to reduce the un-
certainty associated with the output distribution.

Uncertainty can be modeled using entropy. The entropy of a distribution of possible
outputs T is defined as

H(T) = −
∑
t∈T

P(t)logP(t). (4)

When the distribution is peaked toward some particular output value t we say the
system has low uncertainty and is confident in that t is the correct output. If the
distribution is spread over a wider range of possible values, the system is characterized
as having high uncertainty.

After the initial machine prediction phase, the system of hidden nodes H = X ∪ Y
has some associated uncertainty H(X, Y|O). After selecting Y nodes for observation, the
remaining uncertainty is H(X|Y, O). One way of minimizing final prediction error is to
observe those nodes that give the largest reduction between H(X, Y|O) and H(X|Y, O).
Thus, the optimization function is

g(X, Y, O) = H(X, Y|O) − H(X|Y, O). (5)

Using the identity

H(X, Y|O) = H(Y|O) + H(X|Y, O), (6)

this uncertainty reduction is equivalent to maximizing the marginal entropy of the
selected nodes H(Y|O). Solving this problem exactly requires calculating the joint dis-
tribution of all possible subsets of the budget size K. As a simplifying assumption, we
relax the notion of connectivity between nodes.

For a set of independent random variables Y1, . . . , YK, the entropy can be written as
the sum of the individual marginal entropies

H(Y1, . . . , YK|O) = H(Y1|O) + · · · + H(YK|O). (7)

Under this independence assumption, maximization of H(Y|O) is equivalent to select-
ing the individual H(Yk|O) that have the largest individual marginal entropies given
the observed nodes. This results in an information function

φENT (Yk) = H(Yk|O). (8)

We refer to this information function as the token entropy.
Token entropy has appeared elsewhere in the literature where it is referred to as

uncertainty sampling [Lewis and Gale 1994]. Token entropy is ideal for rooting out
specific individual tokens that the machine has difficulty classifying. The fundamen-
tal shortcoming is that for a structured prediction problem, it is unable to take the
data’s connectivity into account. Even without relaxing the dependency assumptions,
maximization of H(Y|O) in no way takes into account how the newly observed nodes Y
are related to the still-unobserved nodes X. In the next section, we introduce a novel
way of incorporating token dependencies into the Question Selection Problem using
the concept of mutual information.

5.3. Influence Maximization

Due to the dependence properties of certain nodes in the graph on other nodes, an
ideal selection strategy would take into account the influence an observation has on
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its surrounding neighborhood. Mutual information (MI) is a pairwise metric between
random variables that quantifies how much the uncertainty of one is reduced when the
other is observed.

Specifically, for two sets of random variables X and Y, we can define the mutual
information between them in terms of their entropies as1

I(X; Y|O) = H(X|O) + H(Y|O) − H(X, Y|O). (9)

It represents the difference between the joint entropy H(X, Y|O) and the individual en-
tropies H(X|O) and H(Y|O). Random variables that are highly uncorrelated will have a
joint entropy equivalent to the sum of their entropies and thus zero information. On the
other hand, highly correlated variables will have large degrees of mutual information.

In terms of the Question Selection Problem, we would like to select those variables Y
which, once observed, have the largest “effect” on the remaining variables X. The impact
of observation on surrounding random variables was discussed in Section 4 in reference
to the Viterbi algorithm since each label depends on the labels of its neighbors. Thus,
we are concerned with optimizing the difference in uncertainty between the variables
X initially and those same variables conditioned on the selected variables Y, given the
original observed variables O. The optimization function for this strategy becomes

g(X, Y, O) = H(X|O) − H(X|Y, O). (10)

Using the identity for conditional entropy

H(X|Y, O) = H(X, Y|O) − H(Y|O) (11)

as well as the definition of MI in Equation (9), it is clear that this is precisely equivalent
to optimizing the mutual information between the newly observed variables Y and
remaining variables X.

This problem is in some sense “harder” than the uncertainty reduction problem of
the previous section. As before, we have to calculate all possible partitions of variables
into X and Y and calculate marginal entropies. Here, we also have mutual entropies
to calculate and the problem cannot be reduced by relaxing dependency properties. In
fact, if we do assume independence we lose the entire ability to reason using mutual
information.

Instead, we rely on a different approximation strategy, exploiting the structural
properties of the graph. Given that all hidden nodes are composed as a linear chain,
the bulk of influence a node has is purely to its two neighbors. This is due to the Data
Processing Inequality [Kinney and Atwal 2014], which says states that information
along a Markov chain can only decrease. As a first-order approximation we consider
only this influence, for each node calculating the mutual information between it and
its neighbors:

g(X, Y, O) =
∑
Yk∈Y

I(Yk; neighbors(Yk)|O) (12)

=
∑
Yk∈Y

I(Yk, left(Yk)|O) + I(Yk, right(Yk|O), (13)

where left(Yk) refers to the neighbor preceding Yk in the chain and right(Yk) refers to
the neighbor succeeding it. This results in a simple information function defined by

1Note that although mutual information is not strictly designed to function over sets of random variables,
treating the joint probability of a set as a single random variable allows the previous definition to hold. We
continue to use the set notation for clarity with previous notation.
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Fig. 6. Clustering for the token “Modeling” shown over five example citations using either (a) token trigrams
or (b) label trigrams. Label trigrams are used for better precision in applying labels.

mutual information:

φMI(Yk) = I(Yk, left(Yk)|O) + I(Yk, right(Yk|O). (14)

Mutual information can be useful in determining the impact a node’s observation
has on other nodes within an individual sequence, but tells us nothing about the dis-
tribution of tokens across all documents. If we want to optimize our selection strategy,
especially for a batched selection process, we should additionally incorporate a token’s
frequency and its influence/uncertainty.

5.4. Clustering by Information Density

In addition to selecting tokens that exhibit either the highest uncertainty or largest
influence, we would like to construct questions in such a way that a single question
can have maximum impact on the whole of the database. Equivalently, we would like
the questions posed to be varied enough that we are not wasting financial resources
asking the same question twice. A data-driven solution is to utilize simple clustering
to group tokens together and map individual questions onto entire clusters instead of
single tokens. As we show in our experiments, in tasks such as text segmentation and
named entity recognition there are many redundant tokens that produce clusters of
large size.

Our strategy for clustering is to collect tokens that should be labeled the same based
on label criteria for our model. Since the CRF model contains features f j(Hi−1, Hi, Oi)
that depend on observations at each token and their labeling neighborhood, we utilize
the same aspects as a means for clustering. The label trigram method operates after
the initial machine prediction and clusters together tokens Hi that that have the same
previous and succeeding prediction labels (Hi−1, Hi+1) as well as the same observation
token Oi. Though the features are sequential and do not consider succeeding tokens
Hi+1), we include it in the clustering to differentiate tokens further and reduce possi-
ble errors. An example is shown in Figure 6, which clusters five documents into two
clusters based on their appearing in either the TITLE or the SERIES as compared to a
typical token trigram approach. Clustering algorithms are furthered compared with
experimental results in Goldberg et al. [2013] with the conclusion that label trigrams
produce superior results.
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When tokens are selected for crowdsourcing, the entire context of the token is dis-
played to the user. Since each item in a cluster has its own independent context, we
select a specific token at random to be the representative token for that cluster. When
mapping clusters to questions, the representative token is the one specifically used to
provide context and to formulate the question. When retrieving the answer to a ques-
tion, the observed label is applied to all tokens in the representative token’s cluster.
The effect of clustering and constrained inference influences many tokens with only a
single question.

The final concern is how to map the selection strategies introduced earlier in this
section onto entire clusters. We looked at a number of strategies for aggregating φENT
and φMI including taking the max information function in the cluster (MAX), taking the
average information function (AVG), and taking the sum of all information functions
(SUM). Since clusters are unevenly distributed in size, we found a metric that takes into
account cluster size to be preferable to one that does not. Therefore, taking the sum
of all information functions in a cluster reflects both the high information redundancy
(size of the cluster) and high uncertainty/influence (value of information function) in
each question.

ALGORITHM 1: Selection Algorithm.
input: Set of all tokens T
output: Ranked set C of maximum information clusters

1 Initialize selected token set S;
2 Initialize cluster set C;
3 foreach t ∈ T do

//Apply information function;
4 t.info ← φ(t);

//Clustering;
5 Add t to cluster c(t, t.label, t.prev label, t.post label);
6 if size(c) == 1 then
7 c.rep token ← t;

8 c.totalInfo ← c.totalInfo + t.info;

9 SORT clusters c ∈ C by c.totalInfoGain;

Algorithm 1 reviews the basic selection strategy for applying information functions to
clusters and ranking them to determine the Top-k questions. We first iterate through
all tokens in an initial pass applying the requisite information function. Since both
φENT and φMI employ simple approximate entropy calculations, they can be computed
in constant time with respect to the token space. During the same iteration pass,
tokens are hashed to a cluster according to the four-tuple (Hi−1, Hi, Hi+1, Oi). These
correspond to the token and its label as well as its neighbors’ labels. The first token put
into a cluster is made the representative token and all subsequent tokens contribute
to a running sum of the information function associated with each cluster. Finally, the
clusters are ordered by their total information functions and selected based on the
budget to be mapped into questions.

6. HUMAN/MACHINE INTEGRATION

After data collection has occurred from Amazon Mechanical Turk, the system must
aggregate their answers and integrate them back into the database. The integration
component assumes the result coming back from the crowd is equivalent to a ground
truth label. This necessitates a high quality method of deriving consensus answers.
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Fig. 7. Example maximum likelihood path through the label lattice. The token “Cyril” is chosen for querying
and the result comes back that it is an Author. As a result, all paths not passing through Author are removed
from the inference space.

Probabilistically aggregating various workers is an expanding area of research and
there are many complex ways to combine answers into a single result. These include
complex schemes to weight both workers [Demartini et al. 2012] and question difficulty
[Whitehill et al. 2009]. See Sheshadri and Lease [2013] for a good survey of crowd
aggregation techniques.

For our text extraction tasks, we find that Turkers perform particularly well and
are able to achieve consistently high accuracy. The high capability enables simple ag-
gregation methods like majority voting to be as powerful as some of the more complex
methods. To be sure, we implemented a Bayesian-based [Raykar et al. 2010] aggrega-
tion method and found the results to be nearly identical to majority voting.

The majority vote aggregation produces a crowd-consensus label that must be in-
tegrated back into the database. The advent of Constrained Viterbi, as described in
Section 4, allows us to use this newly acquired evidence to improve the machine’s pre-
diction on other labels through correction propagation. The crowd effectively becomes
part of the inference step.

An example of how integration is performed is highlighted in Figures 7 and 8. First,
in Figure 5 we have the original inference that associates a maximum likelihood path
through the hidden label space. The selection process results in a node being sent to
the crowd for observation, which “clamps” that node to its true label (Figure 7). The
inference process is run again as a constrained inference. Because label values have
dependencies on the previous label, a change in token t results in potential changes to
t − 1 and t + 1, which can potentially propagate further down the chain (Figure 8).

Human feedback is stored in the database in a table with schema

FEEDBACKTBL(strID, pos, token, label).

This is similar to the TOKENTBL from Section 3, but the final label column is not
probabilistic and corresponds to the crowd-consensus label. Using joins with a table
containing all the cluster assignments, we can propagate the evidence to all tokens in
the same cluster as the representative token.
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Fig. 8. New maximum likelihood path when the inference is constrained to pass through the Author label
for the token “Cyril.” The new constraints coupled with the existing features cause the token “Fonlupt” to be
influenced and changed to an Author as well.

7. EXPERIMENTS

In the following section, we demonstrate the effectiveness of our approach applied to
a text segmentation task and NER task. Given a semistructured document like an
academic citation string, text segmentation is a problem concerned with partitioning
the string into different classes. This information can be used to build a database of
records that allow for efficient search and analysis. We also test a NER task where
the goal is to extract entities such as people, places, and organizations from tweets.
NER can be distilled to an annotation task where every token is labeled as a specific
entity type or else Other. NER is a common preprocessing step to higher-order semantic
algorithms.

In order to fully show how our methods perform when the machine learning task is
only partially accurate, we apply our training and testing sets to different datasets.
This is a common practice in knowledge and learning transfer as well as in practical
applications where vendors are required to use off-the-shelf models that are difficult
or expensive to retrain. Our results do not apply only in this domain and could just as
easily be applied to standard structured prediction tasks.

Our pipeline consists of two key phases for which we provide experimental evidence
of their utility. The first phase involves selection of information-dense tokens that
would be sent to the crowd to answer. We compare our entropy and mutual information
approximation along with other selection baselines. In the integration phase the true
label for selected tokens is applied and constrained inference is performed. By com-
paring directly to the unconstrained selection phase experiments, we demonstrate the
performance gain coming directly from the influence of selected tokens.

In the following sections, we describe the experimental setup and datasets in more
detail before discussing the individual experiments.

7.1. Setup and Datasets

7.1.1. Text Segmentation. For training in the text segmentation task, we used the cur-
rently popular UMass citation dataset [Anzaroot and McCallum 2013]. State-of-the-art
citation extraction has typically used the CORA dataset, which is much smaller and
is being replaced by this current dataset. It contains 1800 bibliographic citations from
physics, mathematics, computer science, and computational biology domains pulled
from Arxiv.org and is fully labeled with 32 fine-grained (FIRST NAME, LAST NAME,
TITLE, etc.) fields.
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Fig. 9. Class distributions for Umass, DBLP, CoNLL 2003 Newswire, and TwitterNLP datasets. The top
three UMass fields are AUTHOR(2), TITLE(1), and JOURNAL(4). The top three DBLP fields are PROCEEDINGS(7),
TITLE(1), and AUTHOR(2).

The test set consists of 7K citations comprising 242K tokens extracted from the
DBLP2 database, which contains primarily computer science papers. Each citation is
represented as a row in the database with columns for the seven classes: TITLE, AUTHOR,
CONFERENCE, SERIES, PROCEEDINGS, ISBN, and YEAR. We reproduced the original citation
by concatenating all of the string text together as a single semistructured document.
From this we generated a training set and testing set based on a 50% split.

We used the IITB CRF3 model for training and testing, which is heavily engineered
to represent the state-of-the-art in the text segmentation task. The tokenizer it comes
with includes commas and all numbers mapped to a single “DIGIT” token in the tok-
enization. We filtered these out for scoring.

The class distributions for both datasets are shown in Figure 9. Both UMass and
DBLP sets contain citations from different domains and are structured in many differ-
ent ways with differing pieces of information. While DBLP is more course than UMass,
each of its labels maps onto either a direct label or set of labels in UMass. We computed
this mapping in advance and translated the field sets prior to computing F1 scores.

7.1.2. Named Entity Recognition. For the named entity recognition task, we used the off-
the-shelf Stanford NER4 parser. This is the current state-of-the-art in NER and used
widely throughout the literature. The model contains four classes (PERSON, LOCATION,
ORGANIZATION, or OTHER) and is trained on the CoNLL 2003 shared task, which itself
is a set of newswire articles from the Reuters corpus. This model performs best in its
native newswire domain, but it is commonly applied to other domains as well.

We wanted to see how the Stanford NER parser would apply to a Twitter domain, us-
ing the TwitterNLP5 dataset, which consists of 2,400 unstructured tweets comprising
34K total tokens. TwitterNLP contains many novel entities not found in the Stan-
ford training set. In addition, the variability in punctuation and capitalization makes
Twitter a very difficult domain for NER using purely machine learning. The original
TwitterNLP included extraneous classes like Product or TV-Show, but we converted
these to Other.

2http://dblp.uni-trier.de/.
3http://crf.sourceforge.net/.
4http://nlp.stanford.edu/software/CRF-NER.shtml.
5https://github.com/aritter/twitter_nlp.
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7.1.3. Experimental Setup. As stated in Section 5, the goal of the selection problem
is to select those tokens that are (1) the most likely to resolve errors by their own
correction and (2) the most likely to improve incorrect neighbors through inference
propagation. We evaluate by computing F1 scores on a token-by-token basis, where F1
is the harmonic mean of precision and recall. Precision is the ratio of correct tokens
for a class to all predicted tokens for that class. Recall is the ratio of correct tokens to
all true tokens for that class. Because both applications are instances of a multiclass
classification problem, we use the microaveraged F1. This uses the sums of all true
positives, false positives, and true negatives to compute a final F1. Given a budget
of K questions, we seek to maximize the F1 gain from an initial machine-learning
only baseline we can achieve with each question. Experiments show F1 increases
incrementally as questions are posed.

The experiments that follow contain both synthetic and real crowdsourced data. The
synthetic data is designed to test the selection and integration mechanisms which are
the focus of this article independent of crowdsourcing uncertainty. We do this by sub-
stituting the true field in place of any selected tokens. It would also be untenable to
attempt as many permutations of the experiments as we require using only real data.
The use of synthetic oracle data allows us to significantly scale up the experiments.
We include a small set of end-to-end experiments where we crowdsourced the an-
swers using Amazon Mechanical Turk to verify the ability of the crowd to perform this
task.

7.2. Selection Experiments

For all experiments, we perform a filtering step prior to clustering or selection that
reduces the pool of available tokens. For each citation in the DBLP dataset or tweet in
the Twitter dataset, we select either the highest Mutual Information or Entropy token
depending on the experiment being considered. For our random baseline, we randomly
select a token from each document. This reduces the DBLP pool to 7,000 tokens and
the Twitter pool to 2,400 tokens. Then we either select or cluster and select depending
on the experiment.

Figures 10 and 11 show how the F1 scores are improved using different selection
metrics. The plots are differentiated by permutations of dataset, clustering, and con-
straining. Figure 10 shows experimental results for Umass to DBLP, while Figure 11
shows results for newswire to Twitter. The initial F1 without any human correction is
33.8% for training on Umass and testing on DBLP, while for training on CoNLL 2003
and testing on TwitterNLP the initial F1 is 56.6%. While these scores may seem low,
this is standard for a highly difficult knowledge transfer task and is the perfect ap-
plication for pi-CASTLE to exploit machines performing one-half or one-third the task
while humans fill in the gaps. The x-axis shows how the total system F1 increases for
every question we ask. For unclustered experiments, this corresponds to only a single
token correction in the entire dataset. For clustered experiments, each question maps
on a cluster of tokens, all of whom are given the crowdsourced label.

The baseline for comparison without clustering is randomly selecting tokens (Rand)
for improvement, bypassing the filtering and ranking steps. If we perform clustering,
we choose a different baseline (Size that randomly selects a token from each citation
(i.e., filtering) and then clusters them and ranks them according to size. This generates
a much stronger baseline and directly compares a baseline data-centric algorithm with
our information-theoretic algorithms. Ent selects tokens whose predicted marginal
label distribution has the highest entropy in the filtering step and ranks them either
by token entropy or total cluster entropy. Similarly, MI selects those tokens with the
highest mutual information approximation as discussed in Section 5 and clusters and
ranks in the same fashion.
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Fig. 10. F1 score increases for Umass training and DBLP testing.

The size of the DBLP test set is 242k tokens and without clustering, we are only
at liberty to correct one token at a time per question asked. This results in mostly
flat plots that do not at all differ by constraining. Clustering without constraining
provides a marginal increase for both information-theoretic methods. Constraining
the selected clusters, however, provides the largest increase across the board for all
selection mechanisms. The performance of random is still quite good because when the
F1 score is as poor as it is, even random corrections will result in some common incorrect
tokens being clustered and corrected. Entropy outperforms it by selecting tokens more
likely to be incorrect and result in score increases upon correction. Mutual Information
performs strongest here because it selects those tokens most likely to improve other
tokens.

The performance on the Twitter test set is a bit closer for all plots compared to
DBLP. There are two reasons for this. First, named entities appear more often as sin-
gleton mentions over a single token. This reduces the effect of constraining. Second, the
increased variety among Twitter compared to semisupervised citations leads to a re-
duction in the impact of clustering. Nevertheless, not performing any type of clustering
or constraining is still the weakest across the board, while performing both clustering
and constraining leads to the overall strongest performance. Selecting by entropy is
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Fig. 11. F1 score increases for newswire training and Twitter testing.

best performer without constraining, but Mutual Information edges out slightly when
constrained inference is performed. In all cases, the information-theoretic methods
significantly outperform the random baselines.

There are a couple of additional observations on both sets of plots. In the Twitter
testing set, some of the graphs appear to dip despite getting a ground truth correction.
There are two additional sources of error our methods introduce into the problem. One
comes from errors in clustering, where incorrectly clustered tokens receive the same
label in error. Another comes from the constrained inference process, where neighboring
tokens correctly labeled by chance are incorrectly labeled after applying corrections.
Our experiments show both of these scenarios are rare and the benefits of clustering
and constraining far outweigh the possible negative effects.

Of particular note is the small number of questions. For the DBLP set at 242k tokens,
200 questions represents only 0.1% of the whole dataset and would cost only about $50
on Amazon Mechanical Turk. And yet using a Mutual Information framework with
some question clustering we are able to improve the F1 score from 34% to 43%, a gain
of nearly 33% of the original. This is much more efficient than selecting at the citation
level for labeling, which requires more redundancy and is unable to take advantage
of clustering. By allowing the machine to do most of the work, we can make the most
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Fig. 12. End-to-end experiment using clustering and constrained inference.

necessary improvements with a small number of questions. This shows that iterating
on this framework with batches of K questions would lead to higher performance with
lowered costs than a higher granularity labeling process.

7.3. End-to-End Experiment

While we employed an oracle in order to show a number of experimental baselines and
dissect where the advantages of our methods are coming from and how they apply to
multiple datasets, we are compelled to confirm the utility of pi-CASTLE in practice. To
this end, we set up an experiment that uses real crowdsourced labels in the correction
process. We chose not to do this for all experiments in order to decouple extraction
uncertainty from crowd uncertainty, the former being the focus of this article.

Using the DBLP test set, we applied filtering, and clustering using random, entropy,
and Mutual Information metrics and ranked clusters according to the same metrics. We
then selected a representative token from each cluster to send to the crowd. Whereas
in the previous experiments the true label was supplied for each representative token,
here we used the crowd consensus for the token, if there was one.

Workers were presented with an unstructured citation containing a bolded token and
a multiple choice response for the class. They were provided two examples showing the
proper classification of such tokens. Each HIT batched 10 citations together and cost
a total of $0.10, or $0.01 for each citation. For redundancy, we five workers labeled
each citation and we used the majority vote label in our experiments. The simplicity of
our problem domain and question interface exempted the need for many of the more
advanced truthing mechanisms that exist in literature that seek to model question
difficulty and worker domain accuracy. Since we already had machine predictions, we
valued precision of responses over recall. As such, we only replaced machine predictions
if there was a crowd consensus of at least three out of five.

Figure 12 shows the results of our end-to-end experiment along with the upper-
bound from the previous experiments that supplied the truth for every cluster. The
crowd answered all HITs with an accuracy of about 80%, accounting for the small drop
in F1 compared to the bounds. The relative performance among mutual information
and entropy compared to random remains roughly the same. These experiments could
reach closer to the upper bound by applying more advanced crowd training, interface
design, and discrimination algorithms that are beyond the scope of this article. We
do show, however, that even a naive crowdsourcing implementation shows a strong
performance benefit when using superior selection algorithms for the hybridization
process.

ACM Journal of Data and Information Quality, Vol. 8, No. 2, Article 10, Publication date: February 2017.



10:22 S. Goldberg et al.

8. CONCLUSION

In this article, we introduced pi-CASTLE, a crowd-assisted SML-based IE system that
can improve the accuracy of its automated results through a crowdsourced workforce.
We developed two information functions and a clustering heuristic to formulate the
most information-dense questions to the crowd given a fixed budget. Our experiments
showed order-of-magnitude performance increases for a given set of questions com-
pared to baselines.

While we focus on text extraction in the article, we envision a more general Crowd-
Assisted Machine Learning (CAMeL) system that uses a probabilistic database to
efficiently connect and integrate crowdsourcing to improve the imperfect results from
SML methods. Many of the core elements developed in pi-CASTLE such as uncertainty
management, question selection, and human/machine integration are applicable to
other SML-based tasks in the CAMeL framework.
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