
Formalizing Interruptible
Algorithms for Human
over-the-loop Analytics

Austin P. Graham
University of Oklahoma

austin.p.graham-1@ou.edu

1

Key Problems

2 (Graham et al., 2017)

Learning algorithms are completely
autonomous.

Predictive models are hard to digest.

Humans are slow thinkers.

3 (Graham et al., 2017)

4 (Graham et al., 2017)

Data Model
Learning

Can I help?

5 (Graham et al., 2017)

Initialization Acceptable Answer ...

User terminates at any point

Initialization TerminationInteraction
Computation Computation

Stop and Wait

Anytime Algorithms

Interactive Algorithms

6 (Graham et al., 2017)

Initialization Termination
Computation

Interaction

Optional Interactions

Interruptible Algorithms

How can I help?

7 (Graham et al., 2017)

Repose the
question

Give more
information

Change model
attributes

Add/Remove
data

8 (Graham et al., 2017)

Key phrase: might as well
start over

Minimally Increase Execution Time for Better
Results

9 (Graham et al., 2017)

How hard the change isHow hard the algorithm is

Greater than 1:
Okay to interrupt

Less than 1:
Just start over

Key Questions

10 (Graham et al., 2017)

What kind of changes can be made to
positively affect outcomes?

How do I know I’ve made things worse?

Visualization

11 (Graham et al., 2017)

Is there a model agnostic way to visualize
learning?

Will the visualizations be readable to
non-experts?

In what contexts will humans have enough
time to react?

Questions?

12 (Graham et al., 2017)

Motivations - Data Mining and Machine Learning
● Long running

○ Days, Weeks
○ Changes in parameters must be made a posteriori

● Static
○ Changing data means re-training model

13 (Graham et al., 2017)

Data
Collection

Data
Cleaning

Model
Production

Model
Deployment

Learning

Humans Getting Involved
● Interactive

○ Humans IN-the-loop
○ Focus on model accuracy

● Anytime
○ Humans ENDING-the-loop
○ Focus on model availability

● Interruptible
○ Humans OVER-the-loop
○ Manage the accuracy/availability tradeoff

14 (Graham et al., 2017)

Interactive Algorithms
● Learning models asking humans questions

○ Stop-and-wait conditions

● Improves accuracy with detrimental increases to runtime

Initialization TerminationInteraction
Computation Computation

Stop and Wait

15 (Graham et al., 2017)

Example Interactive Approaches
● Awasthi et al.

○ Hierarchical clustering
○ Analyst can split/merge clusters at every level

● Lad and Parikh
○ Image clustering
○ Algorithm asks the analyst for the answer

● Amershi et al.
○ Clustering in social networks
○ Improvement happens on user choice

16 (Graham et al., 2017)

Anytime Algorithms
● Learning models build to an acceptable point, then improve until user says to

stop or convergence
○ Assumes models improve with longer runtimes

● Allows analysts to train their comfort level

Initialization Acceptable Answer ...

User terminates at any point

17 (Graham et al., 2017)

Anytime Approaches
● Ueno et al.

○ Stream mining
○ Anytime structure accounts for fluctuations in data streams

● Vlachos et al.
○ Time Series clustering
○ Coarse clustering for a rough estimate, then iteratively improve.

18 (Graham et al., 2017)

Meet in the Middle - Interruptible Algorithms
● Learning algorithms follow predefined behavior allowing analyst to make

changes at available times
○ Analyst can intervene only if they find it necessary

● Increases in execution time depend on user involvement

Initialization Termination
Computation

Interaction

Optional Interactions

19 (Graham et al., 2017)

The Interruptibility Index
● Measures change affects relative to the algorithm

● “Algorithm A is interruptible in attribute U if the ratio of the complexity of A to
the complexity of a change C in U is ”

● “If the interruptible index in attribute U for algorithm A is greater than the
interruptibility index in attribute S, then the change in U is less interruptible
than the change in S”

20 (Graham et al., 2017)

HOLA - An Interruptible Algorithm Provider
● (H)uman (O)ver the (L)oop (A)nalytics
● Architecture

○ User Space
■ Interact with an analyst
■ Visualization system conveying model state
■ Convert user gestures and actions to machine readable ‘system calls’

○ Kernel Space
■ Manage concurrent changes in data and model information
■ Store and manage raw data set
■ Return renderable model state to User Space

21 (Graham et al., 2017)

System Calls
● Atomic operations that make up interrupts
● Data Changes

○ Update a record
○ Remove a record
○ Add a record

● Data Model Changes
○ Update hyper parameter
○ Inspect model state

● Control Changes
○ Open connection
○ Close connection

22 (Graham et al., 2017)

Architecture

Algorithm
Implementation

Data Storage

Data

User
Visualization

System Calls

Rendered State

Kernel Space User Space

23 (Graham et al., 2017)

Interrupt
Interpreter

Interrupt

Interruptibility Example: KMeans Clustering
● KMeans Algorithm:

○ Initialize k clusters
○ Randomly assign points to each cluster
○ Calculate initial cluster centers
○ While a change has been made

■ Calculate closes cluster center to each point
■ Reassign the point to closest cluster

● Decisions to be made
○ What changes are interruptible?
○ Where should the interrupts happen?

24 (Graham et al., 2017)

KMeans Interruptibility Indices
● Complexity of KMeans =
● Complexity of changing a single data point q used by KMeans =
●

○ n, k, I are constants with respect to a data point
○ Interrupt is constant time

● Complexity of changing k hyper parameter in KMeans =
●

○ n, I are constants with respect to k hyper parameter
○ Interrupt is linear time

25 (Graham et al., 2017)

Where to Interrupt

26 (Graham et al., 2017)

Summary
● Data mining and machine learning processes take significant amounts of time

and are not adaptive to changing contexts
● Interactive and Anytime algorithms put the human in the loop to improve

accuracy and time with significant tradeoffs
● Interruptible algorithms are designed to give the user the option to interactive

with an algorithm with no penalties if he or she chooses not to do so.
● HOLA is a system designed to make use of an operating system architecture

to manage the interrupts and visualization

27 (Graham et al., 2017)

Future Work
● What would a visualization system that adapts to various model and data states look like?

○ Buffering state for concurrent modification
● Incorporate git-like strategies for data experimentation

○ Branching data to allow for concurrent experiments that are independent
○ Merges and commits to persist successful changes’

● User studies
○ Analyst may not have prior knowledge of their data
○ Ensure visualization can communicate data and model state

28 (Graham et al., 2017)

References
● Amershi, S., Fogarty, J., & Weld, D. (2012, May). Regroup: Interactive

machine learning for on-demand group creation in social networks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 21-30). ACM.

● Awasthi, P., Balcan, M. F., & Voevodski, K. (2014, January). Local algorithms
for interactive clustering. In ICML (Vol. 14, pp. 550-558).

● Lad, S., & Parikh, D. (2014, September). Interactively guiding
semi-supervised clustering via attribute-based explanations. In European
Conference on Computer Vision (pp. 333-349). Springer, Cham.

29 (Graham et al., 2017)

References cont.
● Vlachos, M., Lin, J., Keogh, E., & Gunopulos, D. (2003). A wavelet-based

anytime algorithm for k-means clustering of time series. In In Proc. Workshop
on Clustering High Dimensionality Data and Its Applications.

● Ueno, K., Xi, X., Keogh, E., & Lee, D. J. (2006, December). Anytime
classification using the nearest neighbor algorithm with applications to stream
mining. In Data Mining, 2006. ICDM'06. Sixth International Conference on
(pp. 623-632). IEEE.

30 (Graham et al., 2017)

