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Key Problems
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Learning algorithms are completely 
autonomous.

Predictive models are hard to digest.

Humans are slow thinkers.
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Data Model
Learning

Can I help?
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Initialization Acceptable Answer ...

User terminates at any point

Initialization TerminationInteraction
Computation Computation

Stop and Wait

Anytime Algorithms

Interactive Algorithms
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Initialization Termination
Computation

Interaction

Optional Interactions

Interruptible Algorithms



How can I help?
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Repose the 
question

Give more 
information

Change model 
attributes

Add/Remove 
data
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Key phrase: might as well 
start over



Minimally Increase Execution Time for Better 
Results
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How hard the change isHow hard the algorithm is

Greater than 1: 
Okay to interrupt

Less than 1: 
Just start over



Key Questions
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What kind of changes can be made to 
positively affect outcomes?

How do I know I’ve made things worse?



Visualization
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Is there a model agnostic way to visualize 
learning?

Will the visualizations be readable to 
non-experts?

In what contexts will humans have enough 
time to react?



Questions?
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Motivations - Data Mining and Machine Learning
● Long running

○ Days, Weeks
○ Changes in parameters must be made a posteriori

● Static
○ Changing data means re-training model
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Data 
Collection

Data 
Cleaning

Model 
Production

Model 
Deployment

Learning



Humans Getting Involved
● Interactive

○ Humans IN-the-loop
○ Focus on model accuracy

● Anytime
○ Humans ENDING-the-loop
○ Focus on model availability

● Interruptible
○ Humans OVER-the-loop
○ Manage the accuracy/availability tradeoff
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Interactive Algorithms
● Learning models asking humans questions

○ Stop-and-wait conditions

● Improves accuracy with detrimental increases to runtime

Initialization TerminationInteraction
Computation Computation

Stop and Wait
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Example Interactive Approaches
● Awasthi et al.

○ Hierarchical clustering
○ Analyst can split/merge clusters at every level

● Lad and Parikh
○ Image clustering
○ Algorithm asks the analyst for the answer

● Amershi et al.
○ Clustering in social networks
○ Improvement happens on user choice
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Anytime Algorithms
● Learning models build to an acceptable point, then improve until user says to 

stop or convergence
○ Assumes models improve with longer runtimes

● Allows analysts to train their comfort level

Initialization Acceptable Answer ...

User terminates at any point
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Anytime Approaches
● Ueno et al.

○ Stream mining
○ Anytime structure accounts for fluctuations in data streams

● Vlachos et al.
○ Time Series clustering
○ Coarse clustering for a rough estimate, then iteratively improve.
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Meet in the Middle - Interruptible Algorithms
● Learning algorithms follow predefined behavior allowing analyst to make 

changes at available times
○ Analyst can intervene only if they find it necessary

● Increases in execution time depend on user involvement

Initialization Termination
Computation

Interaction

Optional Interactions
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The Interruptibility Index
● Measures change affects relative to the algorithm

● “Algorithm A is interruptible in attribute U if the ratio of the complexity of A to 
the complexity of a change C in U is      ”

● “If the interruptible index in attribute U for algorithm A is greater than the 
interruptibility index in attribute S, then the change in U is less interruptible 
than the change in S”

20 (Graham et al., 2017)



HOLA - An Interruptible Algorithm Provider
● (H)uman (O)ver the (L)oop (A)nalytics
● Architecture

○ User Space
■ Interact with an analyst
■ Visualization system conveying model state
■ Convert user gestures and actions to machine readable ‘system calls’

○ Kernel Space
■ Manage concurrent changes in data and model information
■ Store and manage raw data set
■ Return renderable model state to User Space
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System Calls
● Atomic operations that make up interrupts
● Data Changes

○ Update a record
○ Remove a record
○ Add a record

● Data Model Changes
○ Update hyper parameter
○ Inspect model state

● Control Changes
○ Open connection
○ Close connection
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Architecture

Algorithm 
Implementation

Data Storage

Data

User 
Visualization

System Calls

Rendered State

Kernel Space User Space
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Interrupt 
Interpreter

Interrupt



Interruptibility Example: KMeans Clustering
● KMeans Algorithm:

○ Initialize k clusters
○ Randomly assign points to each cluster
○ Calculate initial cluster centers
○ While a change has been made

■ Calculate closes cluster center to each point
■ Reassign the point to closest cluster

● Decisions to be made
○ What changes are interruptible?
○ Where should the interrupts happen?
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KMeans Interruptibility Indices
● Complexity of KMeans = 
● Complexity of changing a single data point q used by KMeans = 
●

○ n, k, I are constants with respect to a data point
○ Interrupt is constant time

● Complexity of changing k hyper parameter in KMeans = 
●

○ n, I are constants with respect to k hyper parameter
○ Interrupt is linear time
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Where to Interrupt
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Summary
● Data mining and machine learning processes take significant amounts of time 

and are not adaptive to changing contexts
● Interactive and Anytime algorithms put the human in the loop to improve 

accuracy and time with significant tradeoffs
● Interruptible algorithms are designed to give the user the option to interactive 

with an algorithm with no penalties if he or she chooses not to do so.
● HOLA is a system designed to make use of an operating system architecture 

to manage the interrupts and visualization
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Future Work
● What would a visualization system that adapts to various model and data states look like?

○ Buffering state for concurrent modification
● Incorporate git-like strategies for data experimentation

○ Branching data to allow for concurrent experiments that are independent 
○ Merges and commits to persist successful changes’

● User studies
○ Analyst may not have prior knowledge of their data
○ Ensure visualization can communicate data and model state
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