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1. INTRODUCTION

Knowledge bases (KBs) are repositories of interconnected facts with an inference en-
gine. Companies are increasingly populating KBs with facts from disparate sources
to create a central repository of information to provide users with a richer and more
integrated user experience [Herman and Delurey 2013]. Additionally, inference over
the constructed KB can produce new facts not specifically mentioned in the KB. Google
is now employing KBs to surface additional information for user search [Dong et al.
2014a]. Manually constructed KBs, such as YAGO [Hoffart et al. 2013] and DBpedia
[Auer et al. 2007], are increasingly being used as the gold standard and ground truth of
newer KBs [Dong et al. 2014b]. However, the growing number of KBs inside an organi-
zation require a sufficiently high level of quality and must be meticulously maintained.

Both YAGO and DBPedia were constructed based on data from Wikipedia. Within
Wikipedia, the medium lag between the occurrence of a notable event and the addition
of the event was measured at 356 days [Frank et al. 2012]. This fact spurred many
efforts to discover methods to automatically build, extend, and clean KBs [Frank et al.
2012; Ellis et al. 2012; Ji et al. 2014; Surdeanu and Ji 2014]. In these contests, teams
build systems to explore the creation of Web-scale KBs; however, by and large, these
contests stop short of designing systems for deployment in a production system. We
believe that there are two main questions that are wholly understudied across research
communities: in KBs, over time, (1) what stale information needs to be cleaned? and
(2) when should this information be updated?
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In this article, we present a challenge to the information quality community to
develop techniques that support the long-term support and maintenance of critical,
rapidly growing KBs. We follow this challenge with two notable papers that make
strides in this direction. We end this group of papers with a discussion of three research
questions in response to this challenge.

2. RELATED WORK

Yahoo! recently released a description of WOO [Bellare et al. 2013], which is their
internal system for managing entity resolution over the growing number of entities
across the Web. As new information is ingested into WOO, it uses a custom search
engine to find candidate entities and enqueues them for possible updates. The WOO
paper is focused on the synthesis of KBs from existing sources; it does not fully explore
inference for growing the KB. Growing KBs using inference over the existing facts,
although helpful, can introduce difficult errors and is mostly avoided by WOO. This
type of KB expansion exacerbates the need for innovative quality control methods.

The Never Ending Language Learner (NELL) continuously builds and expands
knowledge bases through information extraction and inference [Carlson et al. 2010].
Part of the growth of NELL is the development of innovative techniques to continuously
review and validate existing information. The challenge that we pose is to investigate
NELL-style systems inside enterprise KBs, where system management is critical.

3. CHALLENGE AND RESEARCH DIRECTION

We present a challenge for the information quality community to integrate the in-
formation quality pipeline into large-scale KBs. Solutions to the research challenges
presented next will help KBs to continue to grow rapidly while ensuring that they
are suited for an organization’s business usage. There are three general areas that we
believe can receive immediate return from the information quality community:

—Probabilistic KBs: Many organizations prefer that their active data stores contain
only pristinely maintained information. Expanding KBs using inference can intro-
duce many types of errors. Naturally, organizations are averse to the more aggressive
yet noisy growth strategies. One promising approach to this problem is to maintain
the provenance and confidence of each fact and extraction [Wang et al. 2012]. Infor-
mation cleaning using these types of probability-aware KBs can provide a powerful
KB that allows users to supply thresholds on the facts that they trust.

—Scheduling quality audits: Aging KBs will inevitably contain information that ex-
pires, becomes invalid, or simply is proven inaccurate. Monitoring KBs for entities,
relationships, and facts with questionable quality is required to maintain KB qual-
ity. Over time, the existence of bad data is extremely elusive. Crowdsourcing (adding
a human in the loop) to validate facts is a leading approach to ensure clean facts
in KBs. Although accurate, crowdsourcing is more expensive and slower than au-
tomated methods. An interesting direction is deciding how to schedule KB quality
audits in an organization KB in accord with varying time, confidence, and probability
budgets. An initial approach is to use the popularity of existing facts in addition to
calculating the uncertainty to prioritize updates.

—Incremental KB maintenance: Speedy extraction of facts from a data source presup-
poses the need for rapid and incremental methods for updating KBs. Incremental
or streaming techniques require focused computation to meet demanding rates of
change. However, for long streams of updates, simply storing results in memory is too
expensive. An interesting research direction is to investigate the trade-offs between
online, batch, or query-driven techniques for computing KB updates, inferences, and
validation.
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