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The average time between an event and its appearance on Wikipedia is 356 
days. J. Frank et al. 2012
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Knowledge Base Acceleration
NIST TREC created a track that reads in streaming documents and a set 
of entities and suggests citations for wikipedia entities.

Challenges:

1) A large amount of documents

2) Ambiguous text

3) Ambiguous Entities

4) Finding relevant facts
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Entity Resolution Algorithm

Markov Chain Monte Carlo Metropolis Hastings!
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Sampling Optimizations

Distributed Computations (Singh et al. 2011)
Query-Driven Computation (Grant et al. 2015)
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Sampling Inefficiencies 

1. Large clusters are the slowest.

 Pairwise comparisons are expensive. 

2. Excessive computation on unambiguous entities

 Entities such as Carnegie Mellon are relatively unambiguous.

⇥(n2)

Streaming documents exacerbates these problems.
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Optimizer for MCMC Sampling

Database style optimizer for streaming MCMC.

This optimizer makes two decisions:

1.Can I approximate the state score calculation?

2.Should I compress an Entity?



Experiments

• Wikilink Data Set (Singh, Subramaniya, 
Pereira, McCallum, 2011) 

• Largest fully-labeled data set 

• 40 Million Mentions 

• 180 GBs of data
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Entity Compression

• Known matches can be compressed into a representative mention.

• Entity compression can reduce the number of mentions (n).

• Compression of large and popular entities is costly.

• Compression errors are permanent.



Compression Types

• Run-Length Encoding 

• Hierarchical Compression (Wick et al.)

Run Length Encoding
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Optimizer

Current work 

1. Classifier for deciding when to perform early stopping. 

2. Classifier for the decision to compress.
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Optimizer for Query-Driven 
Sampling

while samples--  > 0: 
m ~ Mentions 
e ~ Entities 
state’ = move(state, m, e) 
o = Optimize(state, state’, m, e) 
if (!score(state’,state, o)): 

state = state’ 
doCompress(state, m, e, o)

Optimizer needs to know: 
•Current Cardinality of Items in 
each entity. 
• Memory/CPU configuration for 
estimating baseline time



Summary

• We motivated the need and discussed the open space for 
optimization of MCMC sampling methods. 

• We plan to use the newly released labeled TREC stream corpus. 

• Want to collaborate?! 

• Lets talk if you want to do a Ph.D. at the University of Oklahoma! 



Thank you!


