Optimizing Sampling-based Entity
Resolution over Streaming
Documents

Christan Grant and Daisy Zhe Wang
University of Florida

SIAM BSA Workshop 2015



Knowledge Bases are important structure for organizing and
categorizing information.



Knowledge Bases are important structure for organizing and

categorizing information.

+You

Search

Maps

Images

GO ( )8'@ Larry Page

Web Images Maps More ~ Search tools

Shopping News

Larry Page - Wikipedia. the free encyclopedia
en.wikipedia.org/wiki/Larry_Page ~

Lawrence "Larry” Page (born March 26, 1973) is an American computer scientist
and Internet entrepreneur who is the co-founder of Google, alongside Sergey ...

Marissa Mayer - Carrie Southworth - PageRank - Forbes 400

News for Larry Page

Larry Page Gets A Literal Android KitKat

Ubergizmo - 3 days ago

Android 4.4 KitKat marks a milestone for Google as they have named
. their mobile operating system after a branded chocolate — although ...

Larry Page - Forbes
www forbes.com/profile/larry-page/ ~
Larry Page on Forbes - #20 Billionaires, #20 Powerful People, #13 Forbes 400

Larry Page - Google+

https://plus_google.com/+LarryPage ~
2 by Larry Page - in 6,606,272 Google+ circles

Dear Google users— You may be aware of press reports alleging that
Internet companies have joined a secret U.S, government program called
PRISM to give ...

Management team — Company — Google
www.google.com/about/company/facts/management/ ~

Larry Page and Sergey Brin founded Google in September 1998. Since then, the
company has grown to more than 30,000 employees worldwide, with a ...

Larry Page Biography - Facts. Birthday_ Life Story - Biography.com
www._biography.com » People ~

You dont need a search engine to find out all there is to know about Larry Page, co-
founder of Google. Just come to Biography.com!

Larry Page | CrunchBase Profile

www_crunchbase com » People ~

Larry Page was Google's founding CEO and grew the company to more than 200
employees and profitability before moving into.

Oracle's Larry Ellison. Google's Larry Page acted 'evil' | Internet ...
oracles-larry-ellison-googles-larry-page-acted-... ~

E news.cnet.com
B by Dan Farber - in 3,346 Google+ circles
Aug 13, 2013 - In an interview with Charlie Rose, Ellison accuses Google's

CEO of pursuing evilness by violating Oracle patents o develop Android.
Readthis ...

- -

Knowledge Graph
4 N

3 MOre images

Larry Page

Lawrence “Larry” Page is an American computer scientist and Internet
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NIST TREC created a track that reads in streaming documents and a
set of entities and suggests citations for wikipedia entities.
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Knowledge Base Acceleration

NIST TREC created a track that reads in streaming documents and a set
of entities and suggests citations for wikipedia entities.

Challenges:
1) A large amount of documents
2) Ambiguous text
3) Ambiguous Entities

4) Finding relevant tacts
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Markov Chain Monte Carlo Metropolis Hastings!
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Distributed Computations (Singh et al. 2011)
Query-Driven Computation (Grant et al. 2015)
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Sampling Inefficiencies

1. Large clusters are the slowest.
" - e
Palrwise comparisons are expensive.
2. Excessive computation on unambiguous entities

Entities such as Carnegie Mellon are relatively unambiguous.

Streaming documents exacerbates these problems.
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Optimizer for MCMC Sampling °

Database style optimizer for streaming MCMC.
This optimizer makes two decisions:
1.Can | approximate the state score calculation”

2.Should | compress an Entity”



EXperiments
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¢ Wlklllnk Data Set (S/'ngh, Subraman/ya, Profiting From Stolen Street Art

apparently painted a mural... \ The Free Encyclopedia
o |Largest fully-labeled data set

http://1leven.net/tag/borito/ http://en.wikipedia.org/wiki/Banksy

The Sunday Times x Banksy Cover

e 40 Million Mentions RN e liS

... of The Sunday Times, artist Banksy did
not only create the cover art, but ...

e 180 GBs of data

Figure 1: Links to Wikipedia as Entity Labels
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Entity Compression

Known matches can be compressed Into a representative mention.
Entity compression can reduce the number of mentions (n).
Compression of large and popular entities is costly.

Compression errors are permanent.
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Optimizer

Current work
1. Classifier for deciding when to perform early stopping.

2. Classitier for the decision to compress.
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We could make 100,000 insertions
N the time It take to to compress a
300K mention cluster.

Compression must be worth it.
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#dimensions=5; algorithms=0; querynodes=1; conf=0.8; iterations=5; clocks per sec=1000000

Study of clustering and early stopping methods
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Optimizer for Query-Driven
Sampling

while samples-- > O:
m ~ Mentions
e ~ Entities
state’ = move(state, m, e)
0 = Optimize(state, state’, m, e)
it (score(state’,state, 0)):
state = state’
doCompress(state, m, e, 0)

Optimizer needs to know:
eCurrent Cardinality of [tems in
each entity.

e Memory/CPU configuration for
estimating baseline time




summary

We motivated the need and discussed the open space for
optimization of MCMC sampling methods.

We plan to use the newly released labeled TREC stream corpus.
Want to collaborate”!

| ets talk if you want to do a Ph.D. at the University of Oklahoma!



Thank you!




