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Abstract

Increasingly, organizations have employed methods to
understand unstructured text across the web. Entity
resolution is used to identify mentions in large, stream-
ing text corpora. Sampling-based entity resolution us-
ing Markov Chain Monte Carlo (MCMC) techniques
guarantees convergence to a stationary distribution and
can jump out of a local optimum. When performing
entity resolution over streams of incoming data, the
growing quantity of data amplifies two central issues.
First, because the sampling process is random, many
iterations are wasted attempting to resolve unambigu-
ous entities. Second, the quadratic runtime for scoring
entities becomes prohibitive for largest entities. Fre-
quent streaming updates from the web exacerbate these
difficulties. In this paper, we discuss the creation of
a proposal optimizer, in the spirit of database optimiz-
ers. This optimizer observes the proposal updates to the
entity resolution model then makes recommendations
to improve the processing and storage of the model.
We motivate the use of compression techniques to re-
duce the amount of processing when scoring MCMC
updates proposal. We also discuss statistical early-
stopping techniques for scoring entities. We describe
our initial progress over a large entity resolution data set
and how an optimizer can improve performance when
processing entity resolution streams.

1 Introduction

Recently, an increasing number of organizations are
tracking information across social media and the web.
To this end, the National Institute of Standards hosted a
three-year track to accelerate the extraction of informa-
tion and construction of knowledge bases from stream-
ing web resources [5]. This international contest high-
lighted the many difficulties of dealing with collecting
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unstructured data across the web. Across these efforts
in this contest, we identify entity resolution as a major
barrier to progress.

Entity resolution across text corpora is the task of
identifying mentions within the documents that corre-
spond to the same real-world entities. To construct
knowledge bases or extract accurate information, entity
resolution (ER) is a required step. This task is a notori-
ously computationally difficult problem. Using Markov
Chain Monte Carlo (MCMC) techniques exchanges raw
performance for a flexible representation and guaran-
teed convergence [7,10,13].

Processing streaming textual documents exacer-
bates two of the core difficulties of ER. The first dif-
ficulty is the computation of large entities, and the sec-
ond is the excessive computation spent resolving unam-
biguous entities. Over time, the growing size of large
entities makes keeping up with the incoming documents
untenable. Optimization that touches these critical por-
tions is wholly understudied. In this paper, we argue
that compression and approximation techniques can ef-
ficiently decrease the runtime of traditional ER systems
thus making them usable for streaming environment.

In sampling-based entity resolution, entities are
represented as clusters of mentions. A proposal is made
to move a random mention from a source entity to a
random destination entity. The proposed state is scored
and if it improves the global state, the new state is
accepted. If the proposal does not improve the global
state, the proposal may still be accepted with some
small probability. This process is repeated until the
state converges. Scoring the state of an entity cluster,
through pairwise feature computation of the cluster
mentions, is O(n?). For entity clusters larger than 1000
mentions, calculating the score for each proposal can
become prohibitively expensive.

Wick et al. present an entity resolution technique
that uses a tree structure to organize related entities to
reduce the amount of work performed in each step [13].
During each proposal, this approach avoids the pairwise
comparison by restricting model calculation to the top
nodes of the hierarchy. This approach can avoid mas-
sive amounts of computation by performing organizing
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the known sets of mentions. This discriminative tree
structure is a type of compression.

Singh et al. present a method of efficiently sampling
factors to reduce the amount of work performed when
computing features [12]. They observe that many
factors are redundant and do not need to be computed
when calculating the feature score. They use statistical
techniques to estimate the computed feature scores
with a user-specified confidence. This approach can be
categorized as early stopping for feature computation.

There is no one size fits all sampling algorithm [9];
each of these methods, compression and early stopping,
has drawbacks. Compression may slow down insertion
speed and requires extra book keeping to keep to orga-
nize the data structure. Early stopping is not always
precise and adding extra conditionals in the metropolis
hastings loop structure slows computation. Applying
each technique at appropriate times can remove pain
points and accelerate the entity resolution process.

In this paper, we discuss our initial work towards
the design of an optimizer that modifies the sampling-
based collective entity resolution process to improve
sampling performance. Static parameters for evaluating
entity resolution rarely hold for the lifetime of streaming
processing task. The optimizer, in the spirit of the eddy
database query optimizer [1], dynamically examines the
current state of each proposal and suggests methods for
evaluating proposals and structuring entities. We train
a classifier to decide when the sampling process should
use early stopping. Additionally, we use training data
to decide when is the best time for a particular entity
to be compressed. This is done with negligible book
keeping. We make the following contributions:

o We identify several techniques to speed up sampling
past a natural baseline.

o We create rules and techniques for an optimizer to
choose parameters and methods at run time.

e We empirically evaluate these methods over a large
data set.

We recognize that optimizers can also apply to many
different long running machine learning pipeline. Fig-
ure 1 depicts that the optimizer supervises the machine
learning model. The optimizer determines the methods
of processing the streaming updates of the model. As
future work, we plan to create a full optimizer to study
performance improvements on long running machines
learning tasks.

The outline of the paper is as follows. In Section 2,
we give a introduction to factor graph models and entity
resolution. In Section 3, we further discuss the statistics
that an optimizer for entity resolution can use. In
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Figure 1: The high-level interaction of the optimizer.
As streaming data updates pass to the machine learning
model, the optimizer recommends the best algorithms
to update the model. Entity resolution is an example of
a model that needs to be frequently updated with new
data.

Sections 4 and 5, we discuss the implementation of
the optimizer. Finally, in Section 6, we examine the
benefits by testing early stopping and compression over
a synthetic and a popular real world entity resolution
data set.

2 Background

Factor graphs are a pairwise formalism for expressing
arbitrarily complex relationships between random vari-
ables [6]. A factor graph F = (x,1)), contains a set of
random variables x = {z;}] and factors ¥ = {¢;}]".
Random variables are connected to each other through
factors. Factors are a mapping between one or more
variables and a real-valued score.

The probability of a setting w among the set of all
possible settings (2 occurring in a factor graph is given
by a probability measure:

nw) = 2 S [[wie), 2= 3 3 [[wte)
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where 2 is the set of random variables that neighbor
the factor ¥;(-) and Z is the normalizing constant.
Exact inference over complex factors graphs is com-
putationally expensive because it involves computing
the normalizing constant. Therefore, it is popular for
researchers to use Markov Chain Monte Carlo (MCMC)
approximation techniques to estimate the probability of
settings. In particular, for large and dense factor graphs
MCMC Metropolis Hastings (MH) has been shown to
be a scalable technique for inference calculation [10].
Cross-Document entity resolution, resolving entities
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Figure 2: A distribution of entity sizes from the wiki
links corpus [11] with an initial start and the truth.

across document borders, is usually several orders of
magnitude smaller when compared to within document
entity resolution. In large text corpora, the size of
entities follows the power law [11]. For example,
Figure 2 is a generated data set containing 40 million
mentions and 3 million entities over 11 million web
pages. As documents and mentions are incrementally
streamed through, the scale problem becomes a critical
issue.

The mentions on disk can be represented as a large
array of identifiers. Entities are a collection of mentions
and can be represented as such. In the worst case
there is an equal number of entities and mentions. This
means each mention is its own individual entity. In the
other extreme, all the mentions may be a part of the
same entity. For streaming entity resolution, mentions
within documents must be matched to the existing set
of entities [8]. In this paper, we assume the entity set is
initialized by grouping the most similar mentions; new
mentions are assigned to the closed match.

To compute the score at each step, the number
of comparisons is proportional to the number of pair-
wise factors between mentions. The pairwise factors are
weighted functions such as approximate string matches,
token overlap, n-gram matches. There are additional
cluster-wide features calculated at each step. Such fea-
tures include functions to check whether all mentions
in a cluster share the same token. For clusters larger
than 1000 mentions, calculating scores of the model be-
comes extremely expensive. Performing sophisticated
techniques over smaller clusters also adds extra over-
head. In this paper, we examine the trade-off of se-
lecting methods to accelerate the feature computation
process.

3 Accelerating Entity Resolution

In this section, we discuss the acceleration in MCMC-
MH sampling for entity resolution. We then motivate
how we believe gains can be achieved given using com-
pression, sampling acceleration methods and optimiz-
ers. We use a large real-world corpus for a motivating
example.

The two issues we are investigating are as follows:
First, given a source entity, destination entity and
the mention (es,eq,m), which method can score the
proposal in the least amount of time? Secondly, after
the proposal is calculated, should we compress the entity
structure? The optimizer will decide when to use each
technique.

The total size of all entities in the traditional
representation is:

(3.1) sizeof(€) = Z ¢ + (sizeof(int) * |e;]),

3
where sizeof is an abstract function to compute the size
of the containing object, ¢ is a class constant and |e;| is
number of mentions in the entity.

There are many compression techniques, one being
to only keep mentions that have a unique representation
inside entities. That is, if any mention token is a
duplicate, we remove it. This compressed total entity
size is:

(3.2) sizeof(Ecompressed) = Z ¢ + (sizeof(int) * #e;),

K3
where #e; is the cardinality of the mention tokens in
entity e;. We note that when the #e; < |e;|, it may be
worth compressing the entity e;.

In Figure 2, 45% percent of entities are smaller
that 100 mentions in size. Additionally, 82% percent
of entities contain less than 1000 mentions. These
numbers suggest that at times we we can take advantage
of the redundancy within large entities by compressing
them. We investigate the wiki links corpus further in
Section 6.1.

In addition, Figure 2 shows that there is an order of
magnitude difference between the sizes of initial entities
and the true entity sizes. The entities were initialized
by exact string match, a common initialization scheme.
This difference gives us some intuition of the trends of
the entity resolution process. Additionally, this suggest
that there are several distinct representations of entities
During entity resolution the sizes of entities can expect
to grow by an order of magnitude in size while the total
number of smaller entities will decrease. We can use
this property to track the growth and change of entity
sizes over time to understand how to process a particular
grouping of entities.



4 Algorithms

In this section, we will describe simple algorithms
for entity sampling and entity simple compression.
After introducing the compression and approximation
techniques we discuss how an optimizer can be designed
to improve the overall sampling time.

The baseline method performs pairwise compar-
isons by iterating over the mentions using the order on
disk. The mentions ids are used to extract the con-
textual information of each mention from a database.
This is the traditional method of computing the pair-
wise similarity of two clusters. This method results in
simple code so modern compilers are able to perform
extreme optimizations such as loop unrolling.

Confidence-based scoring method performs uniform
samples of the mentions from the source and destination
entities clusters during scoring. This method measures
the confidence of the calculated pairwise samples and
stops when the confidence of a score exceeds a threshold
of 0.95. This is a simplified version of the sampling
uniform sampling method described by Singh et al. [12].

The code to collect statistics is shown in Algo-
rithm 3. The add function shows how and what statis-
tics are recorded when each new mention is added. No-
tice themax and themin are variables in the Stats class
that store the current maximum and minimum. The
current sum, running mean are also updated with each
new value added. The current implementation assumes
the values from the pairwise factors follow a Gaussian
distribution; the model in Singh et al. make the same
assumption [12].

As entity sizes grow, we can expect to see many
repeats of the same or very similar mentions. Reducing
the entity size will shrink the effective memory footprint
of entities. This is important for long running collection
of entities. Run-length encoding is the simplest method
for compressing entities. This method compresses the
near duplicate mentions. A canonical mention is chosen
along each exact duplicate and a counter map records
the number of duplicates that are represented. The
compression rates become large for mention clusters
with many duplicate.

5 Optimizer

When before calculating the MCMC-MH proposal there
are several decision we can make that will affect the
runtime and accuracy of the algorithm. At each step
we may: (1) approximate the calculation of the entity
states; (2) update an entity structure to a compressed
format; (3) skip the calculation of the proposal and di-
rectly accept or reject. These decisions can be made by
observing several features of a source entity, destination
entity and a source mention. We enumerate a small set

void Stats::add(long double x) {

themax = MAX(themax ,x);

themin = MIN(themin ,x);

_sum —+= X;

+Hn;

auto delta = x — mean;

mean += (delta / n);

M2 = M2 + delta % (x — mean);
}

double Stats::variance (void) const {

if (n> 2)
return M2 / (n—1);
else

return 0.0;

}

Figure 3: Sample code from the stats showing how
running statistics are recorded and how the variance
can be computed.

of features that can yield information to help us decide
how the entity structure should be changed.

The decision to compress an entity takes four main
points into consideration. First, the time it takes to
compress the entity (Ciime). For example, if the time it
takes to compress an entity is the same as the time it
takes to reach an answer in the uncompressed format,
then compression is superfluous. Second, it is important
to consider the spaced saved in memory and the amount
of additional entities that do not have to be fetched from
disk and can now fit in memory (Cspace). Third, we
need to know how active an entity has been (Cactivity).
That is, how many additions or subtractions this entity
has seen over a long period of time. This information
is helpful in understanding the likelihood this entity
will be requested for another addition or subtraction.
(Modifying entities clusters causes them to block.) Last,
we retain the activity of an entity over a recent, short
period of time (Clelocity)- This information lets us know
whether it is smart for this entity to take the time
out to for compression while other mentions may be
attempting an insertion or removal.

At each proposal step the decision made should
maximize the wutility. Utility of the decision is a numeric
score to represent the gain performing the proposal
calculation. The utility value is a real number ranged
from (—o00,00). A formal model for utility is as follows:

U= Ctime + Cspace + Cactivity + Cvelocity

Collecting statistics to measure utility is can incur a
significant overhead. Not every decision in the optimizer



Technique ‘ Compression Early Stopping Overhead
Baseline No No None
Confidence-based [12] No Yes Medium
Discriminative Tree [13] Yes No Large
Run-Length Encoding Yes No Small

Table 1: A table of the techniques to improve the sampling process and each is classified by how they affect

sampling.

needs to be decided automatically. We can use some
simple principles to estimate the utility at each point.
In the next section we, examine an entity resolution
data set and get some intuition for the development of
the optimizer.

6 Implementation

In this section, we first describe the wiki link data
set we use for experiments. Following, we present a
micro benchmark to validate our investigation of entity
approximation and compression. We then discuss the
implementation of the compression and approximation
techniques over a large real-world cross-document entity
resolution corpus.

6.1 Wiki Link Corpus The wiki link corpus is the
largest fully labeled cross-document entity resolution
data set to date [11]. When downloaded, the data set
contains 40 million mentions and almost three million
entities — it is a compressed 180 GBs of data. The wiki
link corpus was created by crawling pages across the web
and extracting anchor tags that referenced Wikipedia
articles. Each page contains multiple multiple mentions
of different types. The Wikipedia articles act as the
truth for each mention. Although manually constructed
and not without its biases, this is the largest, fully-
labeled entity resolution data set over web data that
we could find (at the time of preparation).

6.2 Micro benchmark To increase our intuition of
early stopping techniques we simulated the MCMC
proposal processes. We hypothesise that a range of
values exist, where performing the baseline cluster
sampling would be faster than early stopping methods.
We arrange entity clusters of increasing size and we
compute the time (in clock ticks) each proposal takes
to compute the arrangement of the clusters. The
data in the clusters are distributed uniformly for this
experiment and each cluster point was 5 dimensional.
For the baseline cluster score computation we used a
pairwise calculated of the average cosine distance with
and without the mention. To compute early stopping we
set a confidence threshold to 0.8 and the early stopping
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Figure 4: Comparison of baseline verses early stopping
methods.

code stopped computation when the predicted error was
under 20%. There was no difference in the proposal
choices of the baseline method or the early sorting
method.

The simulations were developed in GNU C++11 and
compiled with g++ -03. The CPU was an 8 core
Intel i7 with 3.2 GHz and 12 GBs of Memory. Each
arrangement was run 5 times and results averages.

Early stopping or baseline. We first determine
when early stopping approaches from proposal scoring
is beneficial. For this result we compare the base like
proposal evaluator with a confidence-based scorer for
varying entity sizes. The result of this experiment is
summarized in Figure 4. The x-axis is the number of
mentions in the source and destination cluster for each
proposal. The y-axsis is the number of clock ticks on a
log-scale.

We observe that for proposals with less than 100
and 1000 source and destination mentions, the perfor-
mance of the baseline proposer is better than or almost
equal to that of the more sorted early stopping method.
For proposals that contain an entity cluster with 10000
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Figure 5: The time for compression for varying entity
sizes and cardinalities.This is compared with line repre-
senting the time it take to make 100K insertions.

mentions the early stopping method performs signifi-
cantly better than the baseline method.

Surprisingly, the baseline proposals for for entities
clusters containing 100K mentions performed over an
order of magnitude better than the early stopping
method.

The optimization found in predictable code paths
make simple implementations like the baseline method
attractive for small cluster sizes and very large clusters
sizes. In addition, 82% of the entities in the truthed
wiki links data sets are less that 1000 mentions in size
and 45% of the entities contain less than 100 mentions.

The results of the micro benchmark suggests that
different proposal estimation techniques are useful at
different times. Note that for these techniques a small
constant amount of book keeping space is required to
perform early stopping.

Insertion vs Compressions Time. Compressing
an entity is an expensive operation. When compression
and entity, it must be locked to prevent any concurrent
access. In order to choose the best times to compress
an entity cluster in this micro benchmark we look at the
time to compression entity of different cardinalities and
compare them to the time it takes to insert entities.
Using a synthetic data set we generated entities of
varying sizes and cardinality. This experiment is shown
in Figure 5.

Cardinality number is a ratio of duplicates in the
data set. For example, Cardinality 0.8 means 8 of
10 items in the data set are duplicates. The graph
shows that in the time it take to compress entities of
about 300K the sampler could make 100K samples. We
can conclude from these result that compressing large
entities is expensive should only be done if the cluster

is prohibitively large and not popular.

Cardinality estimation for millions of entities is a
significant overhead. Tracking cardinalities simulta-
neously for each entity, even using small probabilistic
sketches such as Hyperloglog [4] become prohibitive for
large amounts of entities. By the time the cardinality of
an entity needs to be monitored for possible compres-
sion, that entity might as well be compressed. We are
continuing to look for lighter weight cardinality estima-
tors for millions of mentions so decisions can quickly be
made.

7 Summary

In this paper, we describe an initial approach for
optimizing sampling for the entity resolution process.
We begin to develop an optimizer that attacks two
major limitations, the size of the entities and the
redundant computation. This paper motivated the need
for the optimizer and examined the feasibility of its
treation. We plan to implement the full optimizer over a
large, streaming corpus, with resolved entities. We hope
to soon have a fully resolved TREC streamcorpus! and
examine the performance of the optimizer of that large
data set. Additionally, we hope to compare results with
enterprise ER systems such as WOO [2].
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