
Query-Driven Sampling for Collective Entity Resolution

Christan Grant
University of Oklahoma

cgrant@ou.edu

Daisy Zhe Wang
University of Florida
daisyw@cise.ufl.edu

Michael Wick
University of Massachusetts, Amherst

mwick@cs.umass.edu

Abstract

Entity Resolution is the process of determining records
(mentions) in a database that correspond to the same real-
world entity. Traditional pairwise ER methods can lead to
inconsistencies and low accuracy due to localized deci-
sions. Leading ER systems solve this problem by collec-
tively resolving all records using a probabilistic graphical
model and Markov chain Monte Carlo (MCMC) inference.
However, for large datasets this is an extremely expensive
process. One key observation is that, such exhaustive ER
process incurs a huge up-front cost, which is wasteful in
practice because most users are interested in only a small
subset of entities.

In this paper, we advocate pay-as-you-go entity reso-
lution by developing a number of query-driven collective
ER techniques. We introduce two classes of SQL queries
that involve ER operators — selection-driven ER and join-
driven ER. We implement novel variations of the MCMC
Metropolis Hastings algorithm to generate biased sam-
ples and selectivity-based scheduling algorithms to sup-
port the two classes of ER queries. Finally, we show that
query-driven ER algorithms can converge and return re-
sults within minutes over a database populated with the
extraction from a newswire dataset containing 71 million
mentions.

1. Introduction
Entity resolution (ER) is the process of identifying and

linking/grouping different manifestations (e.g., mentions,

noun phrases, named entities) of the same real world ob-

ject. It is a crucial task for many applications including

knowledge base construction, information extraction, and

question answering. For decades, ER has been studied in

both database and natural language processing communi-

ties to link database records or to perform entity resolution

over extracted mentions (noun phrases) in text.

ER is a notoriously difficult and expensive task. Tradi-

tionally, entities are resolved using strict pairwise similar-

ity, which usually leads to inconsistencies and low accuracy

due to localized, myopic decisions [15]. More recently, col-

lective entity resolution methods have achieved state-of-

the-art accuracy because they leverage relational informa-

tion in the data to determine resolution jointly rather than

independently [3]. However, it is expensive to run collec-

tive ER based on probabilistic graphical models (GMs),

especially for cross-document entity resolution, where ER

must be performed over millions of mentions.

In previous approaches, collective ER is performed ex-

haustively over all the mentions in a data set, returning all

entities. Researchers have developed new methods to per-

form large-scale cross-document entity resolution over par-

allel frameworks [11, 15]. However, in many ER applica-

tions, users are only interested in one or a small subset of

entities. This key observation motivates query-driven ER,

an alternative approach to solving the scalability problem

for ER.

Compared to previous ER models and algorithms,

query-driven techniques in this paper scale to data sets

that are in many cases three orders of magnitude larger.

Moreover, the ER model in this paper is general enough

to take both bibliographic records and mentions extracted

from unstructured text. Query-driven ER techniques over

GMs can also be generalized for other applications to

perform query-driven inference.

Because exhaustive ER is expensive it is common to

use blocking techniques to partition the data set into ap-

proximately similar groups called canopies. Query-driven

ER in this paper differs from blocking in two important

ways: 1) deterministic blocks are replaced by a pairwise

distance-based metric, and 2) blocks (or canopies) are im-

plicit to the query-driven ER data set and do not have to be

created in advanced. The latter point, implicit blocking, is

realized using a data structure created based on the similar-

ity to a query mention. This data structure allows parame-

ters to include or remove mentions from the working data

set. This property is similar to the iterative blocking tech-

nique [14], which is shown to improve ER accuracy. Such

an approach can dramatically amortize the overall ER cost

suitable for the pay-as-you-go paradigm in dataspaces [9].

To support ER driven by queries, we develop three

sampling algorithms for MCMC inference over graphical

models. More specifically, instead of a uniform sampling

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.34

208

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.34

208

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.34

208

2016 IEEE 17th International Conference on Information Reuse and Integration

978-1-5090-3207-5/16 $31.00 © 2016 IEEE

DOI 10.1109/IRI.2016.34

208

distribution, we sample on a distribution that is biased

to the query. We develop a query-driven sampling tech-

niques that maximizes the resolution of the target query

entity (target-fixed) and biases the samples based on the

pairwise similarity metric between mentions and query

nodes (query-proportional). We also introduce a hybrid

method that performs query-proportional sampling over a

fixed target. We develop two optimizations to the query-

proportional and hybrid methods to model the similarity

and dissimilarity between the mentions and the query en-

tity, i.e., attract and repel scores. In the first target-fixed al-

gorithm, we adapt the samples to resolve the query entity.

The second query-proportional algorithm, selects mentions

based on their probabilistic similarity to the query entity.

The third hybrid algorithm combines the two approaches.

A summary of approaches can be found in Table 3.

When a user is interested in resolving more than one

entity we employ multi-node ER techniques. To implement

multi-node ER queries, single-node ER techniques may be

naively performed iteratively to resolve one entity at a time.

However, such an algorithm can lead to un-optimized re-

source allocation if the same number of samples is gener-

ated for each target entity, or low throughput if one of the

entities has a disproportionately low convergence rate. To

alleviate this problem, we present three multi-query ER al-

gorithms that schedule the sample generation among query

nodes in order to improve overall convergence rate.

In summary, the contributions of this paper are the

following:

• We define a query-driven ER problem for cross-

document, collective ER over text extracted from un-

structured data sets;

• We develop three single-node algorithms that perform

focused sampling and reduce convergence time com-

pared to a non-query-driven baseline (Section 3). We

develop two influence functions that use attract and

repel techniques to grow or shrink query entities (Sec-

tion 4.1);

• We develop scheduling algorithms to optimize the

overall convergence rate of the multi-query ER (Sec-

tion 4.2). The best scheduling algorithm is based on

selectivity of different target entities (Section 4.3).

The results show that query-driven ER algorithms is

a promising method of enabling realtime, ad-hoc, ER-

based queries over large data sets. Single node queries

of different selectivity converge to a high-quality entity

within 1-2 minutes over a newswire data set containing 71

million mentions. Experiments also show that such real-

time ER query answering allows users to iteratively refine

ER queries by adding context to achieve better accuracy

(Section 5).

Figure 1: Three node factor graph. Circles (random vari-

ables) with mi represent mentions and those with ei repre-

sent entities. Clouds are added for visual emphasis of entity

clusters

2. Preliminaries
In this section, we present a foundation of concepts dis-

cussed in this paper. We start with an introduction of factor

graphs then discuss sampling techniques over this model.

Finally, we formally introduce state-of-the-art entity reso-

lution approaches and explain the origin.

2.1. Factor Graphs Graphical models are a formalism for

specifying complex probability distributions over many in-

terdependent random variables. Factor graphs are bipartite

graphical models that can capture arbitrary relationships

between random variables through the use of factors [8].

As depicted in Figure 1, links always connect random vari-

ables (represented as circles) and factor nodes (represented

as black squares). Factors are functions that take as input

the current setting of connected random variables, and out-

put a positive real-valued scalar indicating the compatibil-

ity of the random variables settings. The probability of a

setting to all the random variables is a normalized product

of all the factors. Intuitively, the highest probability set-

tings have variable assignments that yield the highest factor

scores.

Formally, a factor graph G = 〈x, ψ〉 contains a set of

random variables x = {xi}n1 and factorsψ = {ψi}m1 . Each

factor ψi maps the subset of variables it is associated with

to a non-negative compatibility value. The probability of a

setting ω among the set of all possible settings Ω occurring

in the factor graph is given by a probability measure:

π(ω) =
1

Z

∑
x∈ω

m∏
i=1

ψi(x
i), Z =

∑
ω∈Ω

∑
x∈ω

m∏
i=1

ψi(x
i)

where xi is the set of random variables that neighbor the

factor ψi(·) and Z is the normalizing constant.

Querying graphical models produces the most likely

setting for the random variables. A query on a factor graph

is defined as a triple 〈xq, xl, xe〉 where xq is the set of

nodes in question, xl is a set of latent nodes (entities)

that are marginalized and xe is a set of evidence nodes

(observed mentions). A query task is a sum over the

209209209209

all latent variables and the maximization of the query

probability. A query over the factor graph is defined as

Q(xq, xl, xe, π) = argmaxxq

∑
vl∈xl

π(xq ∪ vl ∪ xe).

To obtain the best setting of the queries in question, infer-

ence is required.

Several methods exist for performing inference over

factor graphs. The entity resolution factor graph, being

pairwise, is dense and highly connected. This property sug-

gests the best methods for inference are Markov Chain

Monte Carlo (MCMC) methods; in particular, we use a

Metropolis Hastings variant [8]. We refer the reader to liter-

ature previous work for a detailed discussion on inference

over factor graphs and a deviation of the technique [16].

The idea of MCMC-MH is to propose modifications

to a current setting and use the model to decide whether

to accept or reject the proposed setting as a replacement

for the current settings. When the models are being scored

only the factors touching nodes with changed values, the

Markov blanket, needs to be recomputed. We accept or

reject changes so the model can iteratively proceed to an

optimal setting.

More formally, consider an MCMC transition function

T : Ω × Ω → [0, 1] where given the current setting ω we

can sample a subsequent setting ω′.
The probability of accepting a transition given a graph-

ical model distribution π is:

A(ω, ω′) = min

(
1,
π(ω′)T (ω, ω′)
π(ω)T (ω′, ω)

)
. (2.1)

Additionally, the intractable partition function Z is

canceled out, making sample generation inexpensive. This

property allows us to calculate the probability of accepting

the next state by simply computing the difference in score

between the next and current state [16].

We say the algorithm converges when a steady state is

reached.1 Intelligently sampling next states decreases the

time to convergence. Convergence in MCMC is difficult

to verify [5], we discuss convergence estimation in Sec-

tion 5.1.

2.2. Cross-Document Entity Resolution Cross-

document ER is the problem of clustering mentions

that appear across independent sets of documents into

groups of mentions that correspond to the same real

world entity. These ER tasks typically assume a set of

preprocessed documents and perform linking across

documents [2, 11]. The scale of the cross-document ER

problem is typically several orders of magnitude more than

1We refer to literature for a more detailed description of conver-

gence [16].

intra-document ER. There are no document boundaries

to limit inference scope and all entity mentions may be

distributed arbitrarily across millions of documents.

To model cross-document ER, let M =
{m1, . . . ,m|M|} be the set of mentions in a data set.

Each mention mi contains a set of attribute-value data

points. Let E = {e1, . . . , e|M|} represent the set of entities

where each ei contain zero or more mentions. Note, we

assume the maximum number of entities is no more than

the number of mentions and no less than 1. Each mention

may correspond to a unique entity or all mentions may

correspond to a single entity.

The baseline method of entity resolution is a straight-

forward application of the MCMC-MH algorithm. We

show pseudo code for the baseline method in Algorithm 1.

Algorithm 1 The baseline entity resolution algorithm using

Metropolis-Hastings sampling
INPUT: A set of unresolved entities E each with one mention m.
INPUT: A positive integer samples.
OUTPUT: A set of resolved entities E .

1: while samples-- > 0 do
2: ei ∼u E
3: ej ∼u E
4: m ∼u ei
5: E′ ←MOVE(E,m, ej)
6: if SCORE(E) < SCORE(E′) then
7: E ← E′
8: end if
9: end while

return E

Algorithm 1 takes as input a set of entities E and

samples which is the number of iterations of the algorithm

or a function to estimate convergence. The algorithm sam-

ples two entities from the entity set and moves one random2

mention into the other entity. After the move, the algo-

rithm checks for an improvement in the overall score of the

model. If the model score improves, the changes are kept,

otherwise the proposed changes are ignored. The SCORE

function sums the weights of all the edges in the given en-

tity to obtain a value for the model. This is equivalent to the

probability of the setting π(·) as described in Section 2.1.

3. Query-Driven Entity Resolution Algorithms
Query-driven ER is an understudied problem; in this sec-

tion we describe our approach to query-driven ER with one

entity (single-query ER) and with multiple entities (multi-

query ER). First, we give a graphical intuition of query-

driven ER algorithms.

3.1. Single-query ER Single-query ER algorithms are the

class of algorithms that resolve a single query-node. In

2Given a set X , the function x ∼u X makes a uniform sample from

the set X into a variable x.

210210210210

particular, the target-fixed ER algorithm aims to focus a

majority of the proposals on resolving the query entity. The

algorithm fixes the query node as the target entity and then

randomly selecting a source node to merge into the entity

of the target query node. This focus on building the query

entity in this type of importance sampling means the query

entity should be resolved faster than if we sampling each

entity uniformly.

A query-driven ER algorithm that only selects the

query-node as the target entity during sampling will cre-

ate errors because such an algorithm is unable to remove

erroneous mentions from the query entity. To prevent these

errors, we allow the algorithm to occasionally back out of

poor decisions, that is, it makes non-query specific sam-

ples. Shown in Algorithm 2, target-fixed entity resolution

adapts Algorithm 1 but it allows parameters to specify the

proportion of time the different sampling methods are se-

lected.

In addition to the input mentions E from Algorithm 1,

target-fixed entity resolution takes as input a query node q.

The output of the algorithm is a resolved query entity and

other partially resolved entities.

For each sampling iteration the algorithm can make

two decisions. The sampler may propose to merge a ran-

dom source node that is not already a member of the query

entity into the target query entity. Alternatively, the algo-

rithm merges a random node with a random entity.

Algorithm 2 Target-fixed entity resolution algorithm

Input: A query node q.
A set of entities E each with one mention m.
A positive integer samples.

Output: A set of resolved entities E′.i

1: E′ ← E ∪ q
2: while samples-- > 0 do
3: if RANDOM() < τα then
4: ei ∼u E′
5: ej ← q.entity
6: m ∼u ei
7: else
8: ej ← {e|∃e, e ∈ E′, e �= q.entity}
9: ei ← {e|∃e, e ∈ E′, e �= ej}

10: m ∼u ei
11: end if
12: E′′ ←MOVE(E′,m, ej)
13: if SCORE(E′) < SCORE(E′′) then
14: E′ ← E′′
15: end if
16: end while

return E′

On lines 3 to 6 the algorithm takes a uniform sample

from the list of entities. If the sampled entity is the same as

the query entity it tries again and samples a distinct entity.

A node is drawn from this entity. The probability of this

block being entered is τα. Lines 7 to 10 are entered with a

probability (1 − τα). This block performs a random entity

assignment in the same manner as Algorithm 1. This block

offsets the aggressive nature of the target-fixed algorithm

by probabilistically backing out of any bad merges. Finally,

the block starting from line 12 to line 15 scores the new

arrangement and accepts if this improves the model score.

We discuss parameter settings in Section 4.4.

Table 1: Mentions setsM from a corpus

id Mention . . .

m1 NY Giants . . .
m2 Bronx Bombers . . .
m3 New York Giants . . .
m4 Yankees . . .
m5 Brooklyn Dodgers . . .
m6 The Yanks . . .

Example Take the synthetic mention setM shown in

Table 1 and a query node q, the baseball team ‘New York

Yankees’, in Table 2. This is the result of the approximate

match of query q over a larger data set (blocking). The men-

tions of M may be initialized by assigning each mention

to its own entity. After a successful run of traditional entity

resolution the set of entities clusters are

{〈q,m2,m4,m6〉, 〈m1,m3〉, 〈m5〉}.
For query-driven scenario the only entity we are interested

in is 〈q,m2,m4,m6〉. Each mention in this query entity

is an alias for the ‘New York Yankees’ baseball team.

The other two mentions represent the ‘New York Giants’

football team and the ‘Brooklyn Dodgers’ baseball team

respectively.

The target-fixed algorithm attempts to merge nodes

with the query entity one mention at a time and the merge

is accepted if it improves the score of the overall model.

We can see in the example that a merge of m1 and m3

may improve the overall model because they have similar

keywords but one refers to the query entity and the other

to different football team. The target-fixed algorithm can

correct this type of error by probabilistically backing out

of errors by moving mentions in the query node to a new

entity as show in line 7 to line 10 of Algorithm 2.

3.2. Multi-query ER A user may want to resolve more

than one query entity, that is, she may be interested in

resolving a watch list of entities over the data set. To

support multiple queries, first merge the canopies of each

query node in the watch list to obtain a subset of the

full graphical model containing only the nodes similar to

query nodes. To resolve the entities we can use query-

proportional methods iteratively over each query node.

We define two classes of schedules, namely, static and

dynamic.

Table 2: Example query node q

id Mention . . .

q New York Yankees . . .

211211211211

Static schedules are formulated before sampling while

dynamic schedules are updated in response to estimated

convergence. The two static schedules we develop are

random and selectivity-based. In random scheduling each

query node from the watch list is selected in a round robin

style. Selectivity-based scheduling is a method of ordering

multi-query samples to schedule proposals in proportion to

the selectivity of the query node. Selectivity, in this case,

is defined as the number of mentions retrieved using an

approximate match of the data set, or the query node’s

contribution to the total new graphical model. For example,

the selectivity of our query node q in Table 2 the selectivity

is simply the size ofM, shown in Table 1.

Random-based scheduling method performs well if all

query nodes come from similar selectivity. Otherwise, if

the selectivity of each query node vary, one query node

may require more sampling compared to the others. If one

query node needs a lot of samples to converge, it may take

the whole process a long time to complete and cycles may

be wasted on other nodes that have already converged.

In addition to scheduling samples in proportion to their

selectivity, we can schedule samples dynamically, depend-

ing on the progress of each query entity. To perform dy-

namic scheduling we need to know how each query entity is

progressing towards convergence. To estimate the running

convergence we do not use standard techniques in litera-

ture because scheduling needs to occur before the model

is close to convergence [5]. Instead, we estimate the con-

vergence by measuring the fraction of accepted samples

over the last N samples of each query in the watch list.

The two dynamic scheduling algorithms are closest-first

and sampling the farthest-first. In closest-first we queue up

the query node that has the lowest positive average number

of accepted nodes over the last N proposals. This schedul-

ing method performs inference for the node that is closest

to being resolved so it can move on to other nodes. Al-

ternatively, the farthest-first algorithm schedules the node

that has the highest convergence rate. This scheduling al-

gorithm makes each query entity progress evenly.

4. Optimization of Query-Driven ER
The previous ER techniques aggressively attempt to resolve

the query entity. However, if the query node is not rep-

resentative of the query items performance of target-fixed

ER can lead to undesirable results. We do not explore this

trade-off; we assume users can select representative query

nodes. In this section, we introduce optimizations to cre-

ate approximate query-driven samples based on the query

node. We first discuss the influence function that is used to

make query-driven proposals. We then discuss the attract

and repel versions of the influence function followed by

two new algorithms. We end with implementation details

and a summary of our query-driven algorithms.

4.1. Influence Function: Attract and Repel To retrieve

nodes from a graphical model that is similar to a query

node we employ the notion of influence. Our assumption is

that nodes that are similar have a high probability of being

coreferent. An influence trail score between two nodes in a

graphical model can be computed as the product of factors

along their active trail as defined in literature [16]. For a

node mi ∈ M and the query node q ∈ M the influence of

mi on the query node is defined as:

I(mi, q) =
∑
j∈F

wjψj(mi, q)

where F is the world of pairwise features and the feature

weight and log-linear function are, respectively, wj and ψj .

The influence function I is an implementation of this trail

score.

The influence function takes a set of entities — or

the equivalent GM — and a query node q as parameters.

The parameters to an influence function can be over the

whole database or a canopy. Over several invocations of

the function, I returns mentions from the graphical model

with a frequency proportionate to their influence on q. If

a mention has little or no influence, the influence acts as

a blocking function, infrequently returning the mention.

Recall influence is the distance active trail distance to query

node. To implement the influence function we build a data

structure based on an algorithm by Vose [13], hereafter

referred to as a Vose structure.

The attract method initializes each mention in the

canopy in its own entity, and then mentions are merged

until the convergence. The target-fixed algorithm discussed

in Section 3.1 is explained using this method. The attract

method works well for low quality canopies, or canopies

that require a small number or items to merge. Conversely,

the repel method works well with high quality canopies or

when most items in a canopy belong to the query entity.

The repel method initializes each mention in the

canopy into a single entity. Then proposals are made to re-

move mentions from the entity so we are left with only the

nodes in the query entity. We discuss this method using the

hybrid algorithm in Section 4.3. To build an influence func-

tion for the repel method we can use the same method and

we only need to normalize and invert the influence scores.

We refer to this as co-influence or Ī.

4.2. Query-proportional ER In the query-proportional

sampling algorithm, on every iteration, the source mention

and target entity are selected in proportion to its distance

to the query entity. Instead of focusing solely on the query

entity, this algorithm prioritizes samples using a measure

that represents probability of a mention being coreferent

with the query entity.

212212212212

Algorithm 3 Query-proportional algorithm

Input: A query node q to drive computation.
A set of entities E each with one mention m.
A positive integer samples.
A function I that samples from nodes entities according to its
influence on a mention.

Output: A set of resolved entities E′.

1: E′ ← E ∪ q
2: while samples-- > 0 do
3: m1 ← I(E′, q)
4: m2 ← I(E′, q)
5: E′′ ←MOVE(E′,m1,m2.entity)
6: if SCORE(E′) < SCORE(E′′) then
7: E′ ← E′′
8: end if
9: end while

return E′

That is, each node p in the graphical model G is

selected on the active trail between itself and the query

node q. This algorithm merges nodes that are similar to the

query node with an increased frequency.

Prior to query-proportional sampling, a Vose structure

(I,§ 4.1) is created. The I influence structure takes a query

node q and the global graphical model E then returns a

sampled mention. Queries over I are made multiple times,

the distribution of the nodes returned is proportional to their

influence. Algorithm 3 describes the query-proportional

algorithm.

For each iteration, the algorithm selects mentions us-

ing the influence function (line 3 and line 4). Then, one

mention m1 is moved into the entity of m2. Mentions m1

and m2 have a higher probability of being coreferent and

therefore a higher probability of a merge occurring in the

query entity compared to random selections as in Algo-

rithm 1. As a corollary, the influence sampling property

creates many small entities that are similar to the query en-

tity.

During query-proportional sampling more entities that

are similar to the query node are created. Some of the

mentions created in intermediate entities during query-

proportional sampling will move to the query entity. This

is a big advantage when performing entity-to-entity merges

(as opposed to mention to entity merges). In this paper, we

do not investigate this extension to the algorithm.

4.3. Hybrid ER The best of both the target-fixed and

query-proportional algorithms can be combined to create

a hybrid algorithm. Like the target-fixed algorithm, the

hybrid method aggressively fixes the target as the query

entity. The hybrid method also chooses its source node

using the influence function in the same manner as the

query-proportional algorithm.

Algorithm 4 shows the hybrid algorithm using the

repel method. With probability τα the algorithm chooses

a mention using the repel method (Ī) and moves it to an

Table 3: Summary of algorithms and their most common

methods for proposal jumps

source target

Baseline random random
Target-Fixed random fixed
Query-Proportional proportional proportional
Hybrid proportional fixed

entity that is not the query node. This is the opposite of

merging a node into the query entity. Pseudocode is listed

on lines 3 to line 5.

Algorithm 4 Hybrid-Repel algorithm

Input: A set of entities E , where one contains all the mentions m and the
others are empty.
A positive integer samples.
A query node q.

A function I that samples from nodes entities according to its
influence on a mention.

Output: A set of resolved entities E′.

1: E′ ← E ∪ q
2: while samples-- > 0 do
3: if RANDOM() < τα then
4: m← I(E′, q)
5: ei ← {e|∃e, e ∈ E′, e �= q.entity}
6: else
7: ei ∼u E′
8: ej ← {e|∃e, e ∈ E′, e �= ei}
9: m ∼u ej

10: end if
11: E′′ ←MOVE(E′,m, ei)
12: if SCORE (E′) < SCORE(E′′) then
13: E′ ← E′′
14: end if
15: end while

return E′

Also, the sampling over the query nodes for each al-

gorithm can also be perform in parallel. In our method, a

thread selects a query node using a random schedule as de-

scribed in Section 3.2. The system will use the Vose struc-

ture associated with the query node to set up a proposal

move. The system attempts to obtain a locks for both en-

tities involved in the proposal. If the system is unable to

obtain a lock on either of the two entities the system will

back out and resample new entities. When the number of

query nodes is small the query-driven algorithms experi-

ence lot of contention at the entities containing the query

nodes. In these circumstances, the system will back out and

either restart the proposal process or attempt a baseline pro-

posal. This avoids waiting for locked entities and keeps the

sampling process active. In Section 5.5 we demonstrate the

parallel hybrid method over a large data set.

4.4. Algorithms Summary Discussion Algorithms 2, 3

and 4 are modifications of proposal jumps found in the

baseline Algorithm 1. Table 3 describes the proposal pro-

cess for each algorithm by its preferred jump method.

213213213213

The target-fixed algorithm builds the query entity by

aggressively proposing random samples to merge into the

query entity. The query-proportional algorithm uses an in-

fluence function to ensure its samples are mostly related to

the query node. The hybrid algorithm mixes the aggressive-

ness of the target-fixed with the intelligent selecting of the

source node found in the query proportional method.

After choosing the correct algorithm, a user needs to

have a well trained model with several features. An ad-

vantage of using query-proportional techniques, because so

little sampling is required, is that we can interactively test

query accuracy. We can and also add context or keywords

that were discovered from a previous run of the algorithm.

This interactive querying workflow will help improve ac-

curacy, which we experimentally verify in Section 5.

5. Experiments
In this section, we describe the implementation details, the

data sets and our experimental setup. Next, we discuss our

hypotheses and four corresponding experiments. We then

finish with a discussion of the results.

Implementation We developed the algorithms de-

scribed in Section 3 in Scala 2.9.1 using the Factorie pack-

age. Factorie is a toolkit for building imperatively defined

factor graphs [10]. This framework allows a templated def-

inition of the factor graph to avoid fully materializing the

structure. The training algorithms are also developed us-

ing Factorie. The algorithms for canopy building and ap-

proximate string matching are developed as inside of Post-

greSQL 9.1 and Greenplum 4.1 using SQL, PL/pgSQL and

PL/Python. Inference is performed in-memory on an In-

tel Core i7 processors with 3.2GHz, 8 cores and 12GB of

RAM. The approximate string matching on Greenplum is

performed on a AMD Opteron 6272 32-core machine with

64 GB.

The parallel experiments were developed entirely in a

parallel database, DataPath [1]. DataPath is installed on a

48-core machine with 256 GBs.

Data sets. The experiments use three data sets, the

first is the English newswire articles from the Gigaword

Corpus, we refer to this as the NYT Corpus [6]. The

second is a smaller but fully-labeled Rexa data set. 3

Because it is fully-labeled it allows us to run the more

detailed micro benchmarks. The NYT corpus contains

1,655,279 articles and 29,866,129 paragraphs from the

years 1994 to 2006. We extracted a total of 71,433,375

mentions using the natural language toolkit named entity

extraction parser [4]. Additionally, we compute general

statistics about the corpus including the term and document

frequency and tf-idf scores for all terms. We manually

labeled mentions for each query over the NYT data set.

3http://cs.iit.edu/c̃ulotta/data/rexa.html

The second data set, Rexa, is citation data from a pub-

lication search engine named Rexa. This data set contains

2454 citations and 9399 authors of which 1972 are labeled.

We perform experiments on the Rexa corpus because it is

fully labeled unlike the NYT Corpus. The Rexa corpus is

smaller in total size but it has average sized canopies.

The third data set is the Wikilinks Corpus [12] largest

labeled corpus for entity resolution that we could find at

the time of development. It contains 40 million mentions

and 3 million entities that were extracted from the web and

truthed based on web anchor links to Wikipedia pages. We

loaded a million mentions onto DataPath to demonstrate

the parallel capabilities.

5.1. Experiment Setup
Models. Features on the NYT and Wikilinks data sets

were manually tuned and the features for the Rexa data

set were trained using sample rank [17] with confidence

weighted updates. We manually tune some of the weights

in the NYT corpus to make up for the lack the complete

training data.

Evaluation metrics. Convergence of MCMC algo-

rithms is difficult to measure as describe in a review

by Cowles and Carlin [5]. We estimate the convergence

progress by calculating the f1 score of the query node’s

entity (f1q). We create this new measure because we are

primarily concerned with the query entity. Other measures

include B3 for entity resolution and several others for gen-

eral MCMC models [2, 5].

The query-specific f1 score is the harmonic mean

of the query-specific recall Rq and query-specific pre-

cision Pq . To accurately determine the Pq and Rq of

each query in this experiment we label each correct

query node. Query-specific precision is defined as Pq =
|{relevant(M)}∩{retrieved(M)}|

|{retrieved(M)}| and query-specific recall Rq =
|{relevant(M)}∩{retrieved(M)}|

|{relevant(M)}| . The f1 score for the query

node’s entity q is defined as:

f1q = 2
RqPq

Rq + Pq
.

The f1q score is a good indicator of entity and answer

quality. For multi-query experiments we calculate the aver-

age f1q scores for each query node. The run of each non-

parallel algorithm is averaged over 3 to 10 runs.

5.2. Realtime Query-Driven ER Over NYT In this ex-

periment we show that query-driven entity resolution tech-

niques allow us to obtain near realtime4 results on large

data sets such as the NYT corpus.

4We define realtime as only contributing a small loss when this process

is part of an external execution pipeline such as an IE pipeline.

214214214214

Figure 2: Hybrid-repel performance for the first 50 samples

for three queries. Each result is averaged over 6 runs

Figure 2 shows the f1q score of the hybrid ER al-

gorithms with three single-query ER queries. The graph

shows performance over the first 50 proposals.

Recall, a canopy is first generated using an approxi-

mate match over the mention set. We use the repel infer-

ence function and all the mentions are initialized in one

large entity. The ‘Richard Hatch’ and ‘Carnegie Mellon’

queries start at an f1q score of .92 and .97, respectively.

The ‘Zuckerberg’ query starts above .65 and improves to

an f1q score over .8.

These experiments show the repel method removing

mismatches from the query entity. The co-influence func-

tion is used to quickly identify the mentions that do not

belong in the entity and they are proposed to be removed.

When a hybrid move is proposed, a mention from the large

entity moved from a large entity group to a new, possibly

empty, entity. This method relies on the good repulsion fea-

tures and correct weights.

In Table 4 we show the performance of three queries.

In addition to the query token we add four columns:

blocking time in seconds, canopy size, inference time in

seconds and the total compute time. Total time is the

complete time taken by each run, this includes building of

the influence data structure and result writing. The values

in Table 4 show that fast performance of query-driven ER

over a large database of mentions.

5.3 Single-query ER In this experiment we show a per-

formance comparison between the single-query algorithms

summarized in Sections 3 and 4. We run the query-driven

algorithms over queries with different selectivity levels and

show the accuracy over time. Each algorithm uses the at-

tract method, so each mention in the canopy starts in its

own entity.

Figure 3a shows the run time of all four algorithms on

the Rexa data set with the query ‘Nemo Semret’, an au-

thor with a selectivity of 11. The performance for the base-

line entity resolution does not get a correct proposal un-

til about 500 seconds. The baseline algorithm takes a long

time to accept the first proposal because it is randomly try-

ing to insert mentions into an existing entity. Target-fixed

immediately begins to make correct proposals. Hybrid and

query-proportional have the best performance and resolve

the entity almost instantaneously. The hybrid chooses the

most likely nodes to merge into the query entity. As the

first couple of proposals are correct merges, hybrid quickly

converges to a high accuracy. Due to imperfect features,

among the 10 averaged runs a few runs get stuck at local

optimum and causing suboptimal results.

Figure 3b shows the run time of four algorithms

for query node id ‘A. A. Lazar’ with selectivity of 46.

The baseline algorithm progresses the slowest. The hy-

brid algorithm quickly reaches a perfect f1q score. Query-

proportional algorithm lags slightly behind the hybrid

method but still reaches a perfect value. The target-fixed

algorithm gradually increases to a perfect f1q score about

60 seconds after hybrid and query-proportional.

Figure 3c shows the run time of four algorithms with

a query ‘Michael Jordan’ of selectivity 130. The baseline

slowly increases over the 100 seconds. The hybrid algo-

rithm again quickly achieves a perfect f1q score followed

by query-proportional and then target-fixed. The time gap

between each of the algorithms increases with the increase

in selectivity, hybrid achieves the best performance.

We look deeper at how selectivity affects the rate of

convergence. In Figure 4 we show the time it takes for each

algorithm to reach an f1q score of 0.95 over increasing

selectivity. We choose five query nodes of increasing selec-

tivity but with the same canopy sizes. The hybrid algorithm

runtime increased with the increase in selectivity but only

slightly steeper than constant. Target-fixed increased for the

first three queries but did not last more than 50 seconds.

Query-proportional has only a slight increase in time till

convergence for the first three queries. The highest two se-

lectivity queries are expensive for query-proportional and

we observe an exponential increase in runtime. These re-

sults are consistent with the exponentially large increase in

the number of random comparisons needed to find a match

for a query entity. The query-proportional algorithm does

not focus on the query entity as aggressively as target-fixed

and hybrid algorithms. Recall that the target-fixed and the

hybrid algorithm focus on moving correct nodes into the

query entity. Query-proportional selects candidate nodes

using the influence function but it does not fix the target

entity. With the target entity not fixed, the chance of cor-

rect node for the query entity decrease exponentially. This

shows that selectivity of nodes affects the runtime perfor-

mance of each algorithm. When performing join-driven ER

it is important to take the relative selectivity of nodes into

account for choosing best scheduling algorithms.

5.4. Multi-query ER In this experiment we study per-

formance of our different scheduling algorithms for join-

driven ER queries. We choose ten query nodes of different

215215215215

Table 4: The performance of the hybrid-repel ER algorithm for queries over the NYT corpus for the first 50 samples. Total

time includes the time to build the Ī data structure and result output. The NYT Corpus contains over 71 million mentions,

a large amount for the entity resolution problems.

Query Blocking Mentions Inference Total time

Zuckerberg 24.4 s 103 2 s 37 s

Richard Hatch 28.3 s 226 18.5 s 59 s

Carnegie Mellon 25.9 s 1302 68 s 124 s

(a) A comparison of single-query

algorithms on a query with selec-

tivity of 11.

(b) A comparison of single-query

algorithms with a query node of

selectivity 46.

(c) A comparison of selection-

driven algorithms with a query

node of selectivity 130.

Figure 3: The results of each graph is averaged over three

runs.

selectivity and run the join queries scheduling algorithms

described in Section 3.2. Consider a list of query nodes

with selectivities of {130, 63, 68, 7, 12, 12, 301, 11, 46}.

The four algorithms, random, closest-first, farthest-first and

Figure 4: The time until an f1q score of 0.95 for five

queries of increasing selectivities; averaged over three runs

Figure 5: The progress of the hybrid algorithm across for

multiple query nodes using difference scheduling algo-

rithms. Each result is averaged over three runs

selectivity-based are shown in Figure 5. The selectivity-

based method out performs the other three algorithms in

terms of convergence rate. The jumps in accuracy on the

graph correspond to the scheduling algorithms choosing

new query nodes and accepting new proposals. It has a high

jump when it starts sampling the seventh, and highest se-

lectivity nodes. The farthest-first algorithm rises the slow-

est out of the scheduling algorithms because it tries to stop

sampling the high performing query entity and makes pro-

posals for the slowest growing. Selectivity-based method

performs well early because the high selectivity queries are

sampled first. The high selectivity query makes up a large

proportion of the total f1q score. The large jump in the

random method is when it reaches the node with selectiv-

ity 301. Notice, closest-first reaches its peak f1q score the

fastest because it tries to get the most out of every query

node.

216216216216

Figure 6: Hybrid-attract algorithm with random queries run

over the Wikilinks corpus. Each plot starts after the Vose

structures are constructed

5.5. Parallel Hybrid ER In this experiment has two ob-

jectives, first how does the hybrid algorithm perform in a

canopy size of 1 million queries and what is the effect of

increasing the number of queries nodes. In Figure 6 the Hy-

brid algorithm is able to resolve entities in a short amount

of time. The creation time of the Vose structure is about

linear in the number of queries. The ratio of queries to enti-

ties increases the performance benefit of the hybrid-attract

method decreases. With more query nodes the construction

time increases and the benefits of the algorithm decrease

and become no better than the baseline method.

Experiment Summary Each of the query-driven

methods outperform the baseline methods in terms of run-

time while not losing out on accuracy. Across different data

set sizes hybrid algorithms have the most consistent perfor-

mance. If a system has a quality blocking function then it

is better to use the co-influence entity resolution method.

With multiple query nodes, selectivity-based is the most

consistent performing algorithm. More accurate estimation

of MCMC convergence performance could allow the dy-

namic scheduling algorithms closest-first and farthest-first

to achieve higher accuracy. The more contextual informa-

tion that can be added to query nodes at query time causes

higher accuracy of the entity resolution algorithms. Parallel

query-driven sampling is an effective way to get speed up

in an ER data set when the ratio of mentions to entities is

low.

6. Summary
In this paper, we propose new approaches for accelerating

large-scale entity resolution in the common case that the

user is interested in one or a watch list of entities. These

techniques can be integrated into existing data process-

ing pipelines or used as a tool for exploratory data analy-

sis. We showed three single-node ER algorithms and three

scheduling algorithms for multi-query ER and show exper-

imentally how their runtime performance is several orders

of magnitude better than the baseline. Further experiments

and discussion is available in our extended write up [7].

An extended version of the paper is available here on

arXiv: http://arxiv.org/abs/1508.03116.

Acknowledgements We would like to thank Kun Li and

Alin Dobra for their help in the implementation of our

prototype.

References

[1] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and

L. Perez. The datapath system: A data-centric analytic

processing engine for large data warehouses. In Proc. of
the 2010 SIGMOD, pages 519–530, NY, USA, 2010. ACM.

[2] A. Bagga and B. Baldwin. Entity-based cross-document

coreferencing using the vector space model. In 17th ACL,

pages 79–85. ACL, 1998.
[3] I. Bhattacharya and L. Getoor. Collective entity resolution

in relational data. ACM Trans. KDD, (1), 2007.
[4] S. Bird, E. Loper, and E. Klein. Natural language pro-

cessing with python. In Natural Language Processing with
Python. O’Reilly Media Inc, 2009.

[5] M. Cowles and B. Carlin. Markov chain monte carlo

convergence diagnostics: a comparative review. Journal of
AmStat, 91(434):883–904, 1996.

[6] D. Graff. Ldc2007t07: English gigaword corpus, 2007.
[7] C. E. Grant, D. Z. Wang, and M. L. Wick. Query-

driven sampling for collective entity resolution. CoRR,

abs/1508.03116, 2015.
[8] D. Koller and N. Friedman. Probabilistic graphical models:

principles and techniques. MIT press, 2009.
[9] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu,

and A. Halevy. Web-scale data integration: You can only

afford to pay as you go. In Proc. of CIDR, pages 342–350,

2007.
[10] A. McCallum, K. Schultz, and S. Singh. FACTORIE:

Probabilistic programming via imperatively defined factor

graphs. In NIPS, pages 1426–1427, 2009.
[11] S. Singh, A. Subramanya, F. Pereira, and A. McCallum.

Large-scale cross-document coreference using distributed

inference and hierarchical models. In ACL-HLT, pages

793–803. ACL, 2011.
[12] S. Singh, A. Subramanya, F. Pereira, and A. McCallum.

Wikilinks: A large-scale cross-document coreference cor-

pus labeled via links to Wikipedia. Technical Report UM-

CS-2012-015, 2012.
[13] M. D. Vose. A linear algorithm for generating random

numbers with a given distribution. IEEE Trans. Softw. Eng.,
17(9):972–975, Sept. 1991.

[14] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and

H. Garcia-Molina. Entity resolution with iterative blocking.

In 2009 ACM SIGMOD, pages 219–232. ACM, 2009.
[15] M. Wick, S. Singh, and A. McCallum. A discriminative

hierarchical model for fast coreference at large scale. In

Proceedings of the 50th ACL, ACL ’12, pages 379–388,

2012.
[16] M. L. Wick and A. McCallum. Query-aware mcmc. In

J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and

K. Weinberger, editors, Advances in NIPS 24, pages 2564–

2572, 2011.
[17] M. L. Wick, K. Rohanimanesh, K. Bellare, A. Culotta,

A. McCallum, and A. McCallum. Sample rank: Training

factor graphs with atomic gradients. In ICML, pages 777–

784, 2011.

217217217217

