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Abstract—Digital newspaper archives accumulated over the
last few decades serve as an easily accessible, rich source of
information for researchers to conduct analytic studies. Extract-
ing unambiguous geographic identifiers, such as the geographic
coordinates solely from text descriptions, a process also known as
geoparsing, has proven to be a major challenge when applied to
massive corpora like newspaper archives. We focus primarily on
archived newspaper reports on political events and aim to parse
the exact event location with high accuracy. We identify all the
focus locations, which includes all locations mentioned in a report
along with the coordinates and task ourselves with recognizing
the location where the event actually occurred which we define
as our primary focus location. Our objective is to extract the
latitude-longitude information of these primary focus locations.
Existing geoparsers only partially serve the purpose and are not
robust enough to process large data archives in reasonable time.
In this paper we propose a framework to extract geolocation
information of primary focus location from 76 million documents
in a distributed environment.

Index Terms—Focus Location Extraction; Distributed Com-
puting; Political Event News;

I. INTRODUCTION

Enormous amounts of political event reports have been
stored away for processing over a long period of time.
Processing these reports manually is not feasible because
of the cost and effort required to do so. Data mining on
unstructured data [1] is still a major area of research. Political
scientists require information from these reports for various
study purposes, and are particularly interested in knowing
about event objectives and impact, attendee profile, location of
the event, etc. In this paper, we focus on precisely identifying
location from this archive.

News reports may have multiple locations mentioned in
them, which we call focus locations, and the event it describes

Fig. 1: A sample news report in English

TABLE I: Capabilities of different geoparsers in focus location
and primary focus location extraction. Here, 3 indicates
presence and 7 indicates absence of corresponding capability.

Geoparsers NER Coordinates Focus Primary Multi-
Extraction Extraction Location Focus Lingual

Location
Cliff- Stanford 3 3 7 7
Clavin CoreNLP
Mordecai MITIE 3 7 7 7
Profile MITIE 7 3 3 7
Profile MITIE 7 3 3 3
(modified)

is assumed to be held at a single location, which we define
to be our Primary Focus Location. For instance, Fig. 1 is
a news report with multiple focus locations mentioned in it
such as “Earth”, “Bali”, “Indonesia”, “Canada” but the event
is to happen at “Bali” which is the primary focus location.978-1-5386-7848-0/18/$31.00 © 2018 IEEE



Fig. 2: Output of Cliff-Clavin for the sample news report

Identifying the primary focus location from this text and
finding its geo-coordinates is trivial. However, performing the
same for millions of documents will span months or even a
year, despite using some of the best available geoparsers such
as Cliff-Clavin [2], Profile [3] and Mordecai [4]. Existing open
source geoparsers either identify the primary focus location or
identify all locations along with their coordinates, use different
NERs (Named Entity Recognition) and some of them even
support multiple languages as depicted in Table I. To our best
knowledge, none of the available systems extract coordinates
for the primary focus location of an event from a news report.

Using the capabilities of the existing geoparsers, we propose
a distributed federated system named Sperg which distributes
the workload across several processes utilizing fault tolerant
applications to process news reports in a robust fashion. It is
fine-tuned to process a million documents within hours and
can store the geo-coordinates of the primary focus location in
MongoDB. Stored results are later indexed and available for
querying to political scientists for research.

We discuss available geoparsers to process news and their
drawbacks in Section II. Then we explain the proposed system
architecture in detail in Section III. Next, we lay out the
details of experiments conducted on the dataset using different
geoparsers and the proposed system in Section IV. We end with
concluding remarks and a discussion of future work.

II. BACKGROUND

Various open source geoparsers were showcased and eval-
uated for performance in [3]. Apart from these, primary
focus location extraction with 40% accuracy for security
related events was featured in [5], and also Europe Media
Monitor [6] is a fully automated system which parses news
events worldwide for a few science areas of interest. Based
on the performance and availability of the geoparsers, we
briefly describe geoparsers like Profile [3], Cliff-Clavin [2]
and Mordecai [4] in the following subsections.

TABLE II: Geoparsing 247.9K documents on a workstation
with 10 cores

Geoparser Total Processing Time Speed
Cliff-Clavin 17.27 Mins 239.1 Docs/Sec

Profile 81 Mins 51.12 Docs/Sec
Mordecai 912 Mins 4.53 Docs/Sec

Fig. 3: Output of Mordecai for the sample news report

A. Cliff-Clavin

Cliff-Clavin [2] is an open source geoparser which is also
hosted as a web service that parses news articles or other
documents. It employs context-based geographic disambigua-
tion over organizations and locations extracted from the text
using Stanford CoreNLP. The focus places are identified from
places mentioned at city, state, and country levels using a
simple frequency-based method. Figure 2 illustrates the result
on geoparsing sample news report from Figure 1 using Cliff-
Clavin. It identified all locations mentioned in a document
and also identified “Indonesia”, “Canada”, “Bali” as focus
locations. We can observe from Table II that Cliff-Clavin
geoparses unstructured text the fastest. Although it is fast in
geoparsing text, it fails to identify a single focus location
confidently. We can leverage the fact that the server can
process hundreds of requests in parallel and can efficiently
identify coordinates of all locations mentioned in a report.

B. Mordecai

Mordecai [4] is also an open source geoparser which uses
MITIE’s NER tool to extract place names from text and
then uses gazetteer in an elasticsearch index to identify focus
country and all other place names from the text. It also fails to
identify primary focus location of a report. A typical result of
Mordecai is shown in Figure 3 which contains all mentioned
location information from the sample news report in Figure 1.
From Table II, we observe that Mordecai processes documents
rather slowly compared to other geoparsers and thus it is not
feasible to process millions of records due to the requirement
of a large amount of resources to compensate for the low
processing power of Mordecai.

C. Profile

Profile [3] identifies a primary focus location associated
with a document using either MITIE or Stanford’s NER. For
example, Figure 5 exhibits the results of Profile for the sample



Fig. 4: System architecture of Sperg.

Fig. 5: Output of Profile for the sample news report

news report from Figure 1 and it can be seen that “Bali” was
identified as a primary focus location. We can observe from
Table II that Profile is slower than Cliff-Clavin but it geoparses
ten times faster than Mordecai. Although Profile identifies the
primary focus location, it fails to provide the necessary geo
coordinates. Also, a single processor consumes about 6GB of
main memory when running Profile which would prove to be
costly when deployed in a multiprocessor environment.

All three geoparsers were found not to scale well when used
to process millions of documents. Implementing the geoparsers
in a multithreaded or multiprocessor environment is vital to
process millions of documents in a short duration and to
build a reliable fault-tolerant system. We propose a distributed
framework named Sperg, which combines the results of Cliff-
Clavin and Profile to extract coordinates of the primary focus
location associated with a document.

III. SYSTEM OVERVIEW

The architecture is laid out across multiple servers, and the
message transfer between servers was carried out via Apache
Kafka. The system operations can be broken down into three
major groups of individual tasks which are:

• Read and distribute news reports data from source file;
• Use Cliff-Clavin to identify coordinates of all the loca-

tions mentioned in the report;
• Identify focus location using Profile and obtain coordi-

nates by mapping with results obtained from Cliff-Clavin.

Each task depends on the output of the previous task and the
whole pipeline can process documents in parallel as long as
the rate of data flow is greater than what the pipeline can
process within a certain period of time. Fig. 4 shows the
system architecture of Sperg. The framework components and
the optimizations performed over them are discussed further
in the subsequent subsections in detail.

A. Distributing Data Source

We sourced our data from a single compressed file contain-
ing 76.1 million news reports totalling to 37GB. To geoparse
all these documents efficiently, we relied on a parallel process-
ing approach across multiple servers. We use message buffers
such as Apache Kafka to queue up documents and consume
them asynchronously from multiple servers. We chose Kafka
for its highly scalable nature and fault tolerance. A simple
python program read documents from the file and queued data
in Kafka under a topic named cliff_input. A single threaded
file reader was sufficient for the task since the major bottleneck
in the system is geoparsing which is discussed in detail in the
following subsections.

B. Geo-coordinate Extraction

We use a multithreaded program to parallelize the I/O
intensive process across multiple sever. Each thread consumes
documents from topics using Kafka consumer API. Each
thread places an HTTP request to the Cliff-Clavin server with
the consumed document, and receives a response from the
server containing coordinates of all locations mentioned in the
document and other information. We append the geographic
information obtained from Cliff-Clavin onto the message with
a unique delimiter and then publish the message onto a dif-
ferent Kafka topic named cliff_result. These threads continue
the process as long as there are messages in the queue and
until a certain timeout period.

C. Focus Location Coordinate Mapping

We make use of Profile to identify the primary focus
location of a news report. In the next two subsections, we
present major components of Profile with modifications to
support multiple languages.

1) Word Embedding: Profile uses a feature extraction al-
gorithm using a pre-trained word embedding model from raw
text. It utilizes the publicly available fastText_multilingual [7]
library which was built with fastText from Facebook and
Google Translate API to align monolingual vectors from two
languages in a single vector space. The length of these vectors
is 300. It initialized the words that are not present in the
set of pre-trained words to zeros. An interesting property of



Fig. 6: A high level schema of modified Profile (Primary Focus Location Extraction).

word embedding is that these vectors effectively encode the
semantic meanings of the words in the context. In other words,
they are able to represent meaningful syntactic and semantic
regularities in a very simple way [8].

2) Sentence Embedding: A basic sentence feature extrac-
tion method is also employed by Profile following the Sen-
tence Embedding technique specified in [9]. In this approach,
uncommon words are given more weight in the corpus, which
essentially makes common words become less important in the
dataset. An alternative approach to finding the sentence vector
is by computing the mean of word vectors in the sentence. The
effectiveness of this approach was empirically compared with
that of another scheme of sentence embedding by assigning
different weights to each word as shown in [3].

Lastly, Profile uses a learning method to identify the primary
focus location from an unstructured text. Classification with
limited training data [10] is a challenge and profile uses
appropriate bias correction methods to overcome it. A high
level schema of the modified Profile is shown in Figure 6.
We obtain the primary focus location of a document using
Profile which is a processer intensive module. So we utilize
Profile from a multiprocessor environment with each processor
serving a dedicated consumer to consume messages from
cliff_result Kafka topic. Each message is parsed and we run
the unstructured text through Profile to identify the primary
focus location. We then look up the result from Cliff-Clavin
for the coordinates of the identified primary focus location.
The results from processing each message are written to
a MongoDB instance. This setup and process is duplicated
across multiple servers with coordination managed through
Kafka.

D. Optimizations

We chose a batch size of 6 million documents to be sent to
the Kafka topic so that there would be minimal reprocessing
performed in case of a system failure. Moreover, we attained
maximum parallelism when we equalled the number of parti-
tions of the topic in Kafka to the total number of consumers
across multiple servers which further avoided resource wait
time since each consumer consumes from its own dedicated
partition. We used one dedicated server with additional disks to
host Kafka and MongoDB in order to balance load on memory

TABLE III: Datasets Statistics

Dataset Documents Size
Terrier Event Data 76.1M 76GB
Randomly Sampled 247.8K 290MB
Terrier Event Data

Atrocity Event Data 3.6K 9.3KB
Training data for profile

and disk consumed by the pipeline since other processes of
the pipeline are memory intensive. To improve MongoDB
write performances, we disabled journaling and also created
an index on certain keys after processing all the documents.
Indexing was required to query faster and was performed later
because insertion tends to be slower for an indexed collection
as the indices have to be re-calibrated after every insertion.

The word embedding approach used by Profile involves
loading Facebook’s fasttext vectors (at most 6GB vector
file) into memory which leads to higher resource demand
when implemented in a multiprocessor environment capable
of processing millions of reports. We leveraged the fact that
fasttext vectors were required only in the read operations, and
with the help of the basemanager module available in the
multiprocessing python package, we hosted fasttext vectors as
a service which could be shared across multiple processors for
read operations. Therefore, the total memory used by Profile
in a multiprocessor environment is reduced significantly by
almost 80%.

IV. EXPERIMENTS

A. Dataset

Table III portrays the size of the datasets and number of
documents used to experiment on the proposed framework.
The Atrocities Event Data [11] is a collection of English
news reports on atrocities and mass killings in several lo-
cations. Human coders have read the reports and extracted
metadata about the events. The annotated reports include
focus locations, and the reports that captured the event. This
dataset was used as training data for Profile. The Terrier [12]
(Temporally Extended Regularly Reproducible International
Event Records) data contained encoded event data for 76
million news reports which was prepared with assistance
from [13]. We randomly sampled 250K documents to tune



Fig. 7: Distribution of 76.1 million documents after Sperg
processing

the performance of our pipeline before we run the data set
through Sperg.

B. Environment Specifics

We used XSEDE resources [14], two s1 xxlarge machines
with 44 cores and 120 GB memory. Using this resource, our
system was deployed on 6 VMs each with an Intel® E5-
2680v3 Haswell CPU @ 2.50GHz, 10 cores, 29 GBs of RAM,
239 GBs of storage and an additional 2TB disk attached to
one of the node. All the processing in these experiments was
carried out with 50 total cores and 145 GBs of RAM. Ten total
cores and 29 GBs of RAM on a single node were allocated
for storage and message buffers in these experiments. All of
the six nodes were located in Indiana under the same network.

C. Application Configurations

We hosted Apache Kafka and MongoDB on a single node
with the 2TB disk for seamless service. We created two topics
namely cliff_input with 25 partitions and cliff_results with 50
partitions on Kafka. These topics shared similar configurations
such as log.retention time of at least two days, log.segment
size of 100Mb and log.retention.check.interval of 30 seconds
for efficiency. In the same server as Kafka and MongoDB, a
python script was used to read six million documents from
the source file at a fixed interval and publish the data into
Kafka cliff_input topic. Instances of Profile and Cliff-Clavin
applications were deployed on the remaining five nodes. A
python script with five threads consumed documents from
Kafka cliff_input topic, sent post requests to Cliff-Clavin
server with the text for the coordinates and then publishes
the coordinates along with the text to Kafka cliff_result topic
asynchronously.

To achieve parallelism, Profile is hosted in a multiprocessor
environment with each processor responsible for 1) Consum-
ing text and coordinates from Kafka cliff_result topic, 2)
Identifying the primary focus location from the given text, 3)
Matching the primary focus location with the result from Cliff-
Clavin for the coordinates, and 4) Writing mapped results onto

TABLE IV: Distribution of 51.83 million documents geop-
arsed by Sperg. 3 and 7 indicates whether the corresponding
geoparser found the location or not.

Case Cliff Profile Documents
Clavin Result count
Result (in Millions)

I 3 3 47.74
II 3 7 4.09

TABLE V: Distribution of 22.68 million documents non geo-
parsed by Sperg. 3 and 7 indicates whether the corresponding
geoparser found the location or not.

Case Cliff Profile Documents Possibility
Clavin Result count to extract
Result (in Millions) coordinates ?

I 3 3 11.26 Yes
II 7 3 2.81 Yes
III 3 7 2.87 Maybe
IV 7 7 5.74 No

a MongoDB collection named as geoloc with the coordinates
and document_id. The nonmatching results are stored in a
different collection named as missmatchloc with document_id
and results of Profile and Cliff-Clavin.

D. Evaluation

Sperg processed 76.1 million documents in 5.29 days in-
clusive of two server failures that demanded reprocessing of
two batches. Fig. 7 depicts that 68% of the total documents
were geoparsed successfully and 30% are not geoparsed, i.e.
there was a mismatch between the results of Profile and Cliff-
Clavin and 2% yielded exceptions through various stages of
Sperg. Table IV is a report on the geoparsed documents, Case
I is when results of Cliff-Clavin and Profile match and Case
II is when Profile fails to identify the primary focus location
while Cliff-Clavin gave a single location which is taken as the
primary focus location for the document by Sperg.

Sperg failed to identify the primary focus location coor-
dinates for 22.68 million documents and the potential for
these documents to be geoparsed to fetch a primary focus
location coordinate is recorded in Table V. Profile identified
the primary focus location for case I and II but could not
match the results of Cliff-Clavin, so there is a chance to
extract coordinates using other geoparsers and match the result
of Profile with it. Case III is when Profile did not give
any result but Cliff-Clavin identified multiple locations within
the document, from which the coordinates of primary focus
location could be extracted with a frequency-based algorithm.
Case IV is when both Cliff-Clavin and Profile failed to give
results and since both used different NERs, it is more probable
that these documents do not have a location mentioned in
them.

Fig. 8 provides a visual on the performance of geoparsers
and Sperg. Fig. 8a and 8b compares the performance of Cliff-
Clavin, Profile and Mordecai on 10K documents with multiple
cores and processing up to 76.1 million documents on 50
cores respectively. Fig. 8a proves the fact that processing time



(a) Performance on 10K documents (b) Performance on 50 cores (c) Performance on 10K documents (d) Performance on 50 cores

Fig. 8: Comparison of Cliff-Clavin, Mordecai, Profile and Spergs performance.

reduces almost linearly upon adding more cores, i.e. geo-
parsing across more servers. Although we reduce processing
time by increasing the number of cores, it could prove to be
costly in the case of Mordecai because it requires at least ten
times more resources compared to Profile and Cliff-Clavin.
We also observed from Fig. 8b that Mordecai, Profile and
Cliff-Clavin would take 37.3, 3.6 & 0.9 days respectively to
geoparse 76.1 million documents. These results prove that use
of Mordecai is not feasible to process documents given the
limited number of resources and timeframe. Performance of
Sperg is more dependent on performance of Profile as seen
from Fig. 8c and 8d, since Cliff-Clavin can parse 76.1 million
documents within 24 hours while Profile would complete the
same task in almost 4 days. Therefore, Sperg is configured
to produce throughput equal to that of Profile, but observed
throughput is lower compared to Profile in Fig. 8c and 8d
because of network latency and system failures.

V. CONCLUSION AND FUTURE WORK

In this paper we described a scalable distributed framework,
Sperg, for extracting geolocation coordinates for the events
from political news reports. Cliff-Clavin and Profile were
identified as ideal candidates to constitute Sperg in solving
the problem. Sperg successfully geoparsed 51.83 million doc-
uments and is much more flexible due to the capability to
add or remove servers dynamically as per the requirement or
the problem size. This architecture provides a platform for
researchers to geoparse big data and due to its dynamic nature,
it provides confidence in building a real time system.

Our future work includes: (i) Support for multilingual report
geoparsing using the capabilities of Profile, (ii) Build a real
time system to process live new reports on the go, (iii)
Add more geoparsers to our federated system to process the
remainder of the documents which Sperg failed to geoparse,
(iv) Configure Sperg to support high availability, i.e. process
documents seamlessly even in the event of a system failure.
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