
2017 IEEE International Conference on Big Data (BIGDATA)

978-1-5386-2715-0/17/$31.00 ©2017 IEEE 2879

Adaptive Scalable Pipelines for Political Event Data
Generation

Andrew Halterman
Department of Political Science

Massachusetts Institute of Technology

ahalt@mit.edu

Jill Irvine, Manar Landis
Women’s and Gender Studies/International and Area Studies

University of Oklahoma

{jill.irvine, Manar.K.Landis-1}@ou.edu

Phanindra Jalla, Yan Liang, Christan Grant
School of Computer Science

University of Oklahoma

{yliang, Phanindra.Jalla, cgrant}@ou.edu

Mohiuddin Solaimani
Department of Computer Science

The University of Texas at Dallas

mxs121731@ou.edu

Abstract—Political event data has been increasingly important
for researchers to study and predict global events. Until recently
the majority of political events were hand-coded from text, limit-
ing the timeliness and coverage of event data sets. Recent systems
have successfully employed big data systems for extracting events
from text. These automated event systems have been limited by
either the slow performance or high infrastructure demands. In
this work, we present a new approach to big data systems that
allow for faster extractions when compared to existing systems.
We describe a modular system, Biryani, that adaptively extracts
events from batches of documents. We use distributed containers
to process streams of incoming documents. The number of
containers processing documents can be increased or reduced
depending on the number of available resources. The optimal
configuration for event extraction is learned, and the system
adapts to maximize the throughput of coded documents. We
show the adaptability through experiments running on laptops
and multiple commodity machines. We use this system to extract
a new political event data set from several terabytes of text data.

I. INTRODUCTION

The availability of large corpora of online news documents

has made it possible for computer and social scientists to

study human political behavior at scales that were previously

impossible. One of the primary bottlenecks in deriving meaning

from text documents is the resource demands of the natural

language processing and information extraction that need to be

performed. Current document processing pipelines suffer from

a range of limitations when it comes to processing hundreds

of millions of news articles for social science applications,

either in terms of poor performance or ease of use. Document

processing pipelines written by social scientists are easily

installed and customized, but tend to be single-threaded and

slow for corpora larger than a few hundred thousand documents.

Frameworks for distributed pipelines that are fully flexible

(Apache Nifi, Kubernetes, Spark, [1]) require sophisticated

infrastructure and significant technical expertise both to set up

and to customize for document processing tasks, which creates

a high hurdle for applied use.

In this paper, we present a simple, adaptive pipeline for

extracting political events from a large number of news

documents. The performance benefits are derived from a

low-overhead distributed architecture that adaptively tweaks

processing parameters to optimize throughput on the processing

machines using a Kalman filter. Its modular, containerized

architecture allows the pipeline to be executed on both laptops

and large clusters with minimal dependencies. This system

greatly outperforms the existing state of the art methods for

political event extraction from text [1], with substantively

simpler installation and maintenance, which is a high priority

for social scientists.

We begin by discussing social scientists’ use of event data

extracted from text (§ II). We then provide a system overview

and describe the components of the system (§ III. We next

present the experiment design (§ IV) and the evaluation of the

experiment (§ V). We conclude by considering the impact

of the experiment results and give future as we conclude

directions (§ VII).

II. BACKGROUND

News articles published on the web give social scientists

in academia and government the ability to measure and

understand political events around the world [2], [3]. In order to

extract meaning from this text, social scientists have developed

standardized event ontologies that define political actors and

political events in a consistent form [4]. These ontologies

represent political events in a framework of “who did what

to whom", with standardized codes for different actors (e.g.,

“government,” “military,” or “rebel”) and the type of action (e.g.

“make statement," “protest for leadership change," or “fight

with small arms”). To transform raw text into event data, social

scientists use specialized dictionary-based coders to extract

events from text according to the ontologies.

Early systems used simple dictionary matching techniques to

extract events from text [5]. Modern approaches use syntactic

information provided by statistical parsers such as Stanford’s

CoreNLP [6] to better match noun and verb phrases with

2880

dictionaries [7]. Processing stories through CoreNLP and the

event data extraction pipeline1 can be very slow, both in “batch”

mode and when run on stories streaming in from scrapers

downloading news stories from web RSS feeds.2 In the existing

pipeline, as stories are scraped from the web, they are stored in

a MongoDB and run through a pipeline to perform CoreNLP

annotations, and then run through a pipeline for event extraction,

geoparsing, and other annotation tasks [8].

The document processing pipelines in widest use in the

open-source event data research community are simple single-

threaded pipelines, which struggle to rapidly process large

corpora in the hundreds of millions of documents. One

approach to improving the processing pipeline is described in

Solaimani et. al. [1]. This processes uses a Spark architecture

for distributed CoreNLP processing and event extraction. 3

We describe a system that can be executed either as a single

machine or a multi-machine distributed system, which achieves

better performance than the current state of the art with much

lower setup costs and without the need for a Spark cluster and

allows researchers to use the same tool for widely varying task

sizes.

III. SYSTEM OVERVIEW

The architecture is built on Docker containers, which

allow dependencies and software to be self-contained [12].

The processing takes place within distributed containerized

CoreNLP instances [6]. Each container pulls documents to

process from a central RabbitMQ queue, processes them, and

stores them in a SQLite database. This architecture allows

the pipeline to run locally on one machine or it may be

distributed across a heterogeneous cluster. The completed

system is launched using a container orchestration system

such as Docker Compose or Kubernetes.4

Fig. 1. The Biryani system architecture.

Containerizing and distributing the processing step has

several advantages in addition to the ability to distribute across

machines: the per-container threads, batch size, and memory

can be adapted to increase processing speed, containers can be

automatically restarted on failure, and the architecture becomes

1https://github.com/openeventdata/phoenix_pipeline
2e.g., https://github.com/johnb30/atlas
3This approach and ours both take existing, specialized tools and reformulate

them as distributed, scalable tools. An alternative approach would be to use
an existing general distributed architecture like Kubernetes or Apache Nifi
and modify it to perform the document processing task or to use general tools
like [9]–[11].

4https://github.com/kubernetes/kubernetes

generalizable to processes that are not natively multi-threaded

(e.g. Python).

Figure 1 displays the components of the system. Raw data is

uploaded from webpages into a MongoDB. This is a common

interface for storing data but it is not essential to the Biryani

system. Data is transferred from Mongo or an API to a

RabbitMQ. This queue is a persistent storage and the entry

point to Biryani. Containers are spun up as consumers of the

data queue. The containers run the Stanford CoreNLP process

with multiple threads. The data in each container is written to

a local SQLite database. Finally, an existing specialized event

extraction system [7] can run over the CoreNLP processed

text.

A. Optimization

The goal of the pipeline is to improve the throughput in

bytes/sec. The primary variables we can manipulate in this

architecture to maximize throughput are the number of threads

per container and the batch size (in documents) of the task.

To automatically optimize parameters we employ a Kalman

filter [13]. The time taken to process documents can be viewed

as a random variable, even with the batch size and thread

number fixed, the process time will differ each time the process

runs. Randomized noise include factors such as how many

other processes are running on the system while it are runs the

pipeline and exceptions that some documents could cause while

being parsed. Therefore, we select the discrete Kalman filter

algorithm, which is a Bayesian time series inference model. The

Kalman filter uses a series of measurements with an estimated

distribution of statistical noise and other inaccuracies, and

infers a number or parameters.

The Kalman filter algorithm works in a two-step process.

In the prediction step, the Kalman filter produces estimates of

the current state variables, along with their uncertainties. Once

the outcome of the next measurement is observed, though with

with noise and measurement error, these estimates are updated

using a weighted average, with more weight being given to

estimates with higher certainty. We describe this process in

Algorithm 1.

The external parameters to the Kalman Filter are P , the

a posteriori error estimate, R, the estimate of measurement

variance, and a noise parameter Q. Because we ran the data

pipeline on a machine that was not running many other

processes, our noise parameter will be relatively small. We

therefore set our Q, representing the stability of the system,

to be small. The value Z is the size of each batch before the

parameters are adjusted. The current a posteriori estimation

of the state is represented as X and K is a relative weight

given to the measurements and current state estimate. Based

on the system configuration, the user may choose different

hyper parameters for the Kalman filter to tune the performance

better.

IV. EXPERIMENTS

In this section, we describe the experiments we ran to

demonstrate the performance of Biryani. We develop the set

2881

Algorithm 1 Pseudocode for Kalman 0.75 filter based opti-

mization
P = 1
Q = 10−1

K = 0.0
R = 0.10.75

while batch in stream do
P ′ = P +Q
Z = len(batch)
K = P+Q

P+Q+R

X ′ = X +K ∗ (Z −X)
P = (1−K) ∗ P ′

end while

of experiments to examine the effectiveness of the system

compared to an earlier event extraction pipeline [1] and the

efficacy of the system optimizations. The data in this system

was stored on an Intel® Xeon® CPU X5687 @ 3.60GHz with

16 total cores and 96 GBs of RAM. All processing in these

experiments were performed on an Intel® Core™ i7-6950X

CPU @ 3.00GHz CPU with 20 total cores and 126 GBs of

RAM. The processing machine contains two 6 TB disks and has

stated transfer speeds of up to 6 GB/s. For all the experiments

we used only 8 cores of the machine and we limit the memory

where specified.

We performed all experiments using the English Gigaword

corpus [14]. This corpus contains a collection of news wire text

data in English that has been acquired over several years by the

Linguistic Data Consortium. It contains 4 million documents

(12 GB uncompressed) from The New York Times Newswire

Service, Agence France Press English Service, Associated Press

s Worldstream English Service, and The Xinhua News Agency

English Service. This data set mirrors web collection tasks

performed by social scientists but is large enough to allow us

to test scalability. The data set is preprocessed and added to

a MongoDB database offline. Using Gigaword allows us to

compare our results with the current state of the art on the

same set of documents [1].

Our architecture already has several advantages over the

current state-of-the-art. Our system runs without the need for

a “Big Data” cluster, which most social scientists do no have

access to. Instead, Biryani can be quickly and easily deployed

on any modern hardware. The distributed processing approach

also allows us to dynamically add and subtract machines to

the pool of workers. To further increase our processing speed,

we can dynamically change the batch size and threads for each

container.

The first experiment aims to discover the optimal batch

and thread size for the pipeline, given a particular machine

configuration. We performed experiments varying the batch

sizes and threads, using a randomized subset of documents of

size 1Kand 25K.

This experiment also logs the total contribution taken

by each component in the pipeline, including the Stanford

CoreNLP annotators. We note that skew is frequently a cause

of performance problems for batch processing systems [15].

A skew in document sizes can leave some batches waiting on

a few large documents to complete processing. Additionally,

the order of incoming documents can significantly impact

the performance of the pipeline. To show the best possible

arrangement of document sizes we show the performance time

of the pipeline over streams of documents that are randomized

and then sorted by size. The sorted document will empirically

creating a performance lower bound, because document skew

will not occur in batches that are pre-determined to have similar

document sizes.

In the next set of experiments, we test the optimizations

defined in Section III-A. We compare the various parameters of

the optimized pipeline with a static set pipeline configuration.

V. EVALUATION

In this section, we describe the results of the experiments

described in Section IV. We first give timing numbers for

different batch sizes. We compare these total times with times

reported by [1]. Next, we look at the break down the proportion

of time used for each component. We then examine the Kalman

filter performance optimizations.

We first experiment to discover the optimal batch size. We

ran each configuration three times and plotted the average

time taken for each combination of the batch size and thread.

Figures 2 and 3 show darker squares where the values are

greater. From the graphs we can approximate that 200 is the

optimal batch size for randomized documents of different sizes

from Gigaword. This confirms the need to optimize batch size

decisions.

Figure 3 shows no significant improvement across all thread

sizes. This suggests that Biryani will not see significant gains

from optimizing thread sizes.

Fig. 2. Average timing information for 1000 Documents.

The time gap in Figure 2 and 3 made us curious to

know which part of the pipeline is taking more time. We

therefore recorded the timing information of each annotator

and other factors (CoreNLP Startup Time, RabbitMQ Delay

Time, JSON Object (for inserting to SQLite) with the same

sets of documents, batch size and threads used above.The

data shows the dependency parse (43.8%) and the creation

of a JSON object (34.6%) are the most expensive processes.

Lemmatization, tokenization and queue delay make up a small

portion, 3.4% of the processing time. The CoreNLP start uptime

2882

Fig. 3. Average timing information for 25,000 Documents.

represents a significant time portion (11.1%) shows the system

needs to carefully select the number of new Docker containers

to run.

A. Adaptive Batch Size using Kalman Filter

From the experiments performed in above we found that

batch size id the most important feature to optimize. In order

to effectively choose how much data should be processed per

batch we use a Kalman filter, which we describe in below.

Figure I shows how many bytes of data we are processing

for each type of pipeline. ‘Kalman 0.25’ represents a pipeline

with the Kalman filter parameter R = 0.10.25 while other

parameters P , K and Q remain unchanged. Note, that the test

data subset was reshuffled before by each run of the pipeline.

Pipeline Docs Run 1 (s) Run 2 (s) Avg (s) % Gain

Static 150K 13,555 13,619 13,587 -
Kalman 0.75 150K 13,051 13,180 13,115 3.47 %

TABLE I
PERFORMANCE GAIN OF KALMAN FILTER APPROACH OVER 150,000

DOCUMENTS.

Table I shows performance gain of Kalman filter approach

over static batch pipeline when performed on 150,000 docu-

ments.

VI. PERFORMANCE OF PIPELINE ON LAPTOP

CONFIGURATION

We used Google Compute Engine (GKE) to spin up a

VM which is similar to a current day laptop configuration.

The configuration of VM used was an Intel® Xeon® CPU

@ 2.30GHz, 4 cores, and 16GB of RAM. We performed

experiments on different pipeline approaches three times each

on 12,484 random documents for each run and calculated the

average.

Figure 4 shows the performance of Kalman filter approach

and the standard error bars of each experiment. In the laptop

configuration experiments, we use the static algorithm as a

baseline. Kalman filter with a parameter of 0.75 sees the

best speed up with a mean increase of 20.33% followed

Fig. 4. Kalman Filter approaches over 12,484 sets of Random Documents
with standard error shown.

by the 1.0 Pipeline with an 16.41% mean increase. Kalman

filter configurations of 0.5 and 0.25 achieved lower speedups

of 14.86% and 14.04%, respectively. The lowest performing

configurations still had a speedups of 9.41% (Kalman 2.0) and

12.52% (Kalman 1.5). We see that Kalman filter optimization

of the event data creation pipeline can also provide speedups

to low resource environments.

VII. CONCLUSION

In this paper we describe a pipeline, Biryani, for extracting

event data from web documents. Biryani has a container

based architecture that adapts to the the available systems

and available load to process text. This architecture allows

researchers to use whatever resources that they have to process

a large data set. We were able to easily deploy into the Azure

cloud in addition to the Google Compute Engine for extra

processing bandwidth. For future work we plan to optimize

based on more system state variables. We will also integrate

this processing system with a larger analytic pipeline that

is used to query and study the extracted events. The code

is available at https://github.com/oudalab/biryani. We will

release a new data set under the name TERRIER (Temporally

Extended Regularly Reproducible International Event Records)

for political scientists to study events.

This work was funded in part by the National Science

Foundation under award number SBE-SMA-1539302.

REFERENCES

[1] M. Solaimani, R. Gopalan, L. Khan, P. T. Brandt, and B. Thuraisingham,
“Spark-based political event coding,” in Big Data Computing Service
and Applications (BigDataService), 2016 IEEE Second International
Conference on. IEEE, 2016, pp. 14–23.

[2] S. P. O’Brien, “Crisis early warning and decision support: Contemporary
approaches and thoughts on future research,” International Studies Review,
vol. 12, no. 1, pp. 87–104, 2010.

[3] W. Wang, R. Kennedy, D. Lazer, and N. Ramakrishnan, “Growing pains
for global monitoring of societal events,” Science, vol. 353, no. 6307,
pp. 1502–1503, 2016.

2883

[4] P. A. Schrodt, “CAMEO: Conflict and mediation event observations
event and actor codebook,” Pennsylvania State University, 2012.

[5] ——, “TABARI: Textual analysis by augmented replacement instructions,”
Dept. of Political Science, University of Kansas,Version 0.7. 3B3, pp.
1–137, 2009.

[6] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit.” in ACL (System Demonstrations), 2014, pp. 55–60.

[7] C. Norris, P. Schrodt, and J. Beieler, “PETRARCH2: Another event
coding program,” The Journal of Open Source Software, vol. 2, no. 9,
jan 2017. [Online]. Available: http://dx.doi.org/10.21105/joss.00133

[8] P. A. Schrodt, J. Beieler, and M. Idris, “Three’s charm?: Open event
data coding with EL: DIABLO, PETRARCH, and the open event data
alliance,” in ISA Annual Convention, 2014.

[9] R. Rak, A. Rowley, W. Black, and S. Ananiadou, “Argo: an integrative,
interactive, text mining-based workbench supporting curation,” Database,
vol. 2012, 2012.

[10] M. Perovšek, J. Kranjc, T. Erjavec, B. Cestnik, and N. Lavrač, “TextFlows:
A visual programming platform for text mining and natural language
processing,” Science of Computer Programming, vol. 121, pp. 128–152,
2016.

[11] Y. Kano, M. Miwa, K. B. Cohen, L. E. Hunter, S. Ananiadou, and J. Tsujii,
“U-compare: A modular NLP workflow construction and evaluation
system,” IBM Journal of Research and Development, vol. 55, no. 3,
pp. 11–1, 2011.

[12] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[13] R. E. Kalman et al., “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[14] R. Parker, D. Graff, J. Kong, K. Chen, and K. Maeda, “English gigaword,”
Linguistic Data Consortium, 2011.

[15] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “A study of skew in
mapreduce applications,” Open Cirrus Summit, vol. 11, 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

