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Abstract

This paper describes the tools and process for building a new machine-coded event
data set of Arabic news text. Data produced from text is becoming one of the most im-
portant new sources of information for quantitative political science, but most publicly
available event datasets are limited to English language sources. The paper describes our
new dataset, the process of producing Arabic event data using open source tools and a
team of coders, and how researchers can make use of the data. This work stems from an
ongoing NSF RIDIR project on “Modernizing Political Event Data,” which aims to pro-
duce multilingual event data and the software needed for researchers to produce custom
datasets.

Introduction

In the past 15 years, automated methods of text analysis have become prominent in political
science, allowing researchers to study much larger amounts of text and to find meaning that

was difficult to extract manually." Many of these methods analyze documents as a whole, pro-

"PhD Candidate in Political Science, Massachusetts Institute of Technology

TProfessor of International and Area Studies, University of Oklahoma

¥ Assistant Professor of Computer Science, University of Oklahoma

SMA Candidate in Computer Science, University of Oklahoma

IPhD Student in Computer Science, University of Oklahoma

"We gratefully acknowledge the support of the National Science Foundation under award number SBE-SMA-

1539302, “Modernizing Political Event Data”. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.



ducing document-level scores or topics (Hopkins and King 2010; Spirling 2012; Grimmer and
Stewart 2013; King, Pan, and Roberts 2013). Other methods extract information or events
from text more directly to produce datasets of political events (Schrodt, Davis, and Weddle
1994; Gerner et al. 2002; Schrodt 2012; Beieler et al. 2016). While other forms of text anal-
ysis have become increasing multilingual (Lucas et al. 2015), event data has largely remained
mono-lingual (though see Osorio 2015; Osorio and Reyes 2017). In this paper, we describe
new tools and processes for creating structured event data from unstructured news text. These
tools are useful for researchers seeking to make event data in other languages, for extending
English-language event data systems to new types of events or actors, and for users of existing

datasets to understand the process by which event data dictionaries are developed.

Event data in political science at its most basic consists of a “triple” of information: an event,
such as a protest or attack, performed by a source actor against a target. These events and
actors are automatically recognized in text, extracted, and resolved to a defined set of codes,
such that “demonstrated” and “rallied in the streets” would both be coded as a PROTEST event
and “Angela Merkel” and “German Ministry of Defense” would both be represented as DEU Gov.
Performing this process on many millions of documents produces a set of structured data that

is much easier to analyze than the raw documents.

In producing event data, we build on the dominant paradigm of event coding in English, which
consists of automatically comparing grammatically parsed sentence text with hand-defined dic-
tionaries using an event coding tool. The tool follows instructions about how to combine the
extracted noun- and verb phrases into a direct event with a source and target, and resolves the
extracted text to specified set codes defined in an ontology. An automated event coding system
thus consists of two components: a set of dictionaries that map noun and verb phrases to their
corresponding actor and event codes in an ontology, and an event coder that applies these dic-

tionaries to the text and makes decisions about how to combine individual actors and actions



into coded events.

The event coder we use is UniversalPetrarch?, an extension of the earlier Petrarch2® event coder,
specifically built as part of our project to handle multiple languages. To be able to work with
multiple languages, UniversalPetrarch takes in articles that have been pre-processed using a
dependency parser, which labels the grammatical dependencies between words in a sentences.
Much more sophisticated than part-of-speech tagging that labels words as VERB or NOUN a de-
pendency parser determines, for instance, that a particular noun is in fact the subject noun of
a verb, while another noun may be that verb’s direct object. Handing this grammatical pars-
ing off to a separate program means that UniveralPetrarch can abstract away from a language,

allowing it to work on any language that is automatically parsable.*

Creating Event Data

The full process of producing events from text consists of three steps. First, the text is put
through a natural language processing step, which annotates the sentence with grammatical
information about the verb and noun phrases in the text and their relationship.® As part of this
step we also perform a lemmatizing step that converts different versions of a word into a single
“lemma” form. For example, “say”, “said”, and “says” would all be lemmatized to the simple form

“say”. This step is convenient in English, but crucial in highly inflected languages such as Arabic.

The second step is to locate potential events in the text, based on the grammatical structure
of the text. Using the grammatical information from the previous step, this step, performed

with our software UniversalPetrarch, looks for combinations of noun-and verb-phrases that

*https://github.com/openeventdata/UniversalPetrarch

*https://github.com/openeventdata/petrarch2

“See http://universaldependencies.org/

*To perform this dependency parsing, we use a custom UDPipe model trained on the Universal Dependencies
Arabic data.



are likely to be the actors, targets, and actions in an event.

The third step is also performed by UniversalPetrarch and consists of comparing the extracted
actor text and action text to a defined set of phrases and the codes they should receive. For ex-
ample, if the previous step recognizes “marched and chanted slogans” as an action in the piece
of text, this step would resolve it to a consistent, defined event type, such as PROTEST. Simi-
larly, the extracted actor text “Angela Merkel” could be resolved to “DEU Gov”. This step thus
performs two important functions. First, even after events have been recognized and extracted
from text, the sheer variety of terms and language to refer to people, organizations, and events
means that raw text phrases are impossible to analyze quantitatively on their own. Resolving
them to common codes makes further analysis feasible. Second, because the previous step does
not consider the content, only the grammatical structure of the sentence, it can extract events
that are not interesting or relevant, such as sports stories or marriage announcements. If their
actors or events are not in the dictionary, no actor or event codes will be returned and thus no
event will be produced. This helps limit the scope of analysis to only events that are politically

relevant.

Dictionary Development

While UniversalPetrarch does not need more than minor changes to accommodate new lan-
guages, the dictionaries it uses to map phrases to codes need to be completely re-written for
each new language. Creating these dictionaries was the bulk of the work we performed in cre-
ating the new event dataset. One of the objectives of this project is to make it easier for future
researchers to create their own event data sets. To help with this task, we built several coding

interfaces which we describe below.

An alternative approach to creating event data from non-English text is to first machine trans-



late the text into English and then use the existing English-language system to generate events
from the translated text. We opted to not use this approach for several reasons. First, while
machine translation has improved dramatically in the past two years, it is by no means perfect,
and the translations it produces are optimized for humans reading normal text, rather than rule-
based machines reading political text.® Other considerations were the slowness and expense of

machine translation systems, along with the reliance on a third-party web-based system.

We assembled a team of native or fluent Arabic speakers to compile the Arabic-language actor
and event dictionaries. We recruited approximately 15 students or recent graduates of the Uni-
versity of Oklahoma’s Arabic Flagship Program. We trained each of these students on the event
ontology we use, CAMEO (Gerner et al. 2002), as well as the interfaces we describe below.
Their work was overseen by a senior native Arabic speaking graduate student or staff member,

who could check their work and answer questions about how to classify different actors or event

types.

Adding actors

One task in creating event data in a new language is to create the dictionaries that map from
actors in the text to a defined set of codes. Recognizing actors in text is not very useful unless the
actors are further resolved to a consistent set of codes. For instance, “Chancellor Merkel” and
“Angela Merkel” both refer to the same person, who is a member of the German government.
In the cAMEO ontology we use, the chancellor of Germany would be represented as “textsc{deu
gov}”. To perform the mapping from text to code, our system, along with all the current event

data systems, relies on predefined “dictionaries” that look for matches in the extracted text and,

°A very interesting future study would be to compare the performance of a machine translation event data
system with a language-customized system.



if a match is found, returns the code. Actors often change roles over their careers, so actor
dictionaries also need to include date ranges for each code. This architecture means that only
actors that have an entry in the dictionary will be coded. Because actors in previous event
data systems were previously added to the dictionaries by hand, creating actor dictionaries is

extremely laborious.

We used several techniques to create the Arabic-language actor dictionaries, ranging from pri-
marily manual to fully automated techniques. We outline each approach, describe the interfaces
we use for each, and provide recommendations for other researchers creating non-English lan-

guage actor dictionaries or researchers developing new ontologies.

The first technique we used to create actor dictionaries was to sample documents from our
corpus of text and extract actors from the text using UniversalPetrarch; our team of coders then
created a new dictionary entry for each extracted actor. For the purposes of replicability, we
used Gigaword for this dictionary development technique. This process replicates the process
that Philip Schrodt and colleagues at the University of Kansas used to create the original English
language dictionaries. In TABARI, the coding program that Schrodt used, the program would
display a single sentence if the existing dictionaries recognized an event but not an actor. Coders
would then manually add the actor, if applicable, to the actor dictionary. Our process improves
on TABARI's manual approach is several ways. First, rather than TABARI's command line text-
based interface, we use a web-based interface that allows coders to select country and role codes
from the interface, rather than requiring them to have all country- and role codes memorized.
The interface will also suggest alternative versions or spellings of names with the “synonym”
button, based on the word2vec (Mikolov et al. 2013) similarity of their usage in the text. This
greatly increases the yield of the system, as many versions of the same name can be added at
once. The interface also includes an “unsure” button that flags the entry for review by a buddy

or the supervisor of the coding process.
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Figure 1: Original coding interface. Extracted noun and verb sentences are on the left. Clicking
one populates the coding environment on the right, where coders then select the role codes and
dates corresponding to the noun, and the event type corresponding to verb phrases.



The advantage of this interface is that it actually pulls up actors that occur in the text, ensuring
that the dictionaries will have entries for them. The disadvantage of this approach is that we
are randomly sampling sentences out of a corpus of millions of sentences, meaning that that
coders may be recording actors that are not, in fact, high enough priority to code. We increased
the yield from this method by only sampling documents with high proportions of political
topics from a topic model we ran on the text, but we are still limited in this method by which
documents appear in the sample. We also do not take advantage of information we have from
the existing English dictionaries. Using this interface, our coders added 6,387 actor entries to

the dictionaries and 1,628 verbs.

The second approach we used in actor coding was to automatically find Arabic transliterations
for existing actors in the English dictionary, using Wikipedia. For each actor in the English dic-
tionaries, we attempted to find its Wikipedia page by checking for a page with the person’s exact
name. When we found an article, we then checked to see if a corresponding Arabic Wikipedia
page existed. If so, we would take the actor name in Arabic and the existing role information
(dates and labels for positions held) and add them to the Arabic dictionaries. The major advan-
tage of this approach is in its speed and efficiency: no human intervention is required and the
actors that have both English and Arabic Wikipedia pages are likely to be the most important.
The disadvantages with this approach are that we can only add actors that are already in the
English dictionaries, which may be out of date and will not include the full range of relevant
actors in Arabic language text. Using this approach, we were able to generate entries for 5,696
actors, more than any other method and with zero marginal cost once we wrote the linking

program.

The third approach we used to generate entries for the Arabic actor dictionaries was to auto-
matically find high-frequency actors in the corpus of text (again using Gigaword) and to have

coders generate entries for them. This step avoids the rarity problem with the initial approach



of randomly selecting sentences. Coders are shown only people and organizations that are men-
tioned many times in the collection of text but which do not exist in the dictionaries, ensuring

that they are always working on the most important previously unadded actors.

Recognizing people and organizations in text is part of a “named entity recognition” (NER) task
in natural language processing. Many oft-the-shelf programs for recognizing named entities
exist, though their performance in Arabic is relatively poor. We initially used a pre-trained
multilingual NER model for spaCy’. The model is trained on poor data, so its performance
is poor, and it does not distinguish between politically relevant and irrelevant people. Out of
the most frequent 6,667 people or organizations recognized by the spaCy multilingual model,
only 179 were added as actors. This low yield is attributable to the system returning text that is
not a named entity, returning names that are politically irrelevant, or names that are too vague
(i.e. common first or last names) to be added to the dictionaries. Our coders have annotated
several thousand sentences in Arabic to create a customized NER model, which should greatly
improve the yield of this approach in the future. The advantage of this approach is that it finds
the actors that are most frequently mentioned in the corpus of text we are interested in coding,
allowing us to tailor our coding efforts to the most important actors in the corpus, which may
not be the most prominent political figures in the region overall. The disadvantage, though,
is substantial. Coders expended a large amount of effort skipping through irrelevant actors to

find ones to add, which is time consuming and bad for coder morale.

"http://spacy.io
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The final approach we used was to scrape Arabic Wikipedia category pages for relevant peo-
ple (e.g. “Politicians in Iraq”), structure the sidebar information on their careers, and present
the extracted information to coders in a web interface. Coders were then asked to provide the
correct actor code for each position the person held and to verify the automatically extracted
date ranges. Using this approach, we generated entries for 2,327 actors, totaling 4,286 role pe-
riods, since many actors hold different positions over time with different corresponding codes.
The advantage of this approach is that coders are working only on actors that are politically
relevant, because we collect the actors’ names from relevant Wikipedia category pages. Coding
is also extremely fast: the relevant information is extracted automatically from the Wikipedia
page and presented to the coders in a highly structured format, with date information already
pre-populated in the page. The disadvantages are that not all relevant actors have Wikipedia
pages, nor do these pages always have biographical sidebars. Organizations also do not have

biographical sidebars as people do, making this interface useful only for coding people.
The actor dictionaries include a list of generic titles (e.g. “troops’, “senator”, or “townspeople”)
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Click the start button to get start.

Name:
Anne-Marie Escoffier
Role:
Senator French Senate
Fra|
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Secondary...
Date Start:2008-10-1 2008-10-1

Date End:Incumbent-01-01

Not Sure? ()

Figure 2: Interface for coding Wikipedia biography sidebars. The extracted position title is
displayed and coders will convert it into its CAMEO representation using structured input
boxes.
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that are not specific to any country but can still generate a role code (here, MIL, LEG, and
CVL, respectively). They also include different versions of country names and their major cities.
Because translating the generic titles was a straightforward and structured task, an experienced
coder simply translated them directly. To generate the list of country terms, each coder was

given a set of instructions and a list of countries and manually created the country entry.

method total actors coded total verbs coded
regular interface 6,387 1,628

wiki translation 5,696 NA

NER coding 179 (with 6,667 skipped) NA

wiki bio coding 2,327 NA

Adding verbs

Besides actors, the second component of the dictionaries is the verb dictionaries that code the
event type. An entry in the verb dictionary consists of a verb phrase (“canceled diplomatic
visit”) and the CAMEO event type it should be coded as (“REDUCE RELATIONS”, or the more
specific 4-digit numerical code). Events can often be described in much greater diversity than
actors can, and the CAMEO framework we use has many more types of events (ca. 250) than
types of actors (ca. 20). Both of these make adding verbs to the dictionary a more difficult
task than actors. We used two separate interfaces to add verb information to the dictionary,
one that extracted verb phrases from the raw text, and one that translated existing entries in

English language verb dictionaries to Arabic.

The first interface we developed allows coders to add both actors (described above) and verb
phrases to their respective dictionaries. It uses UniversalPetrarch to find verb phrases, which

coders then select and assign a CAMEO code to. Verbs on their own rarely convey enough infor-
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mation to be added on their own (canceling a diplomatic visit, military exercise, or an election
are all quite different events) meaning that coders usually need to augment the verb with a direct
object or prepositional phrases to ensure the correct meaning is captured. Knowing how much
detail to include in dictionary entries is one of the important skills that coders need to have: in-
cluding language that is too specific will lead to an entry that never matches another sentence,
making it useless, while a verb entry that does not include important context words will pro-
duce erroneous codings, which is even worse. Moreover, the Petrarch2 and UniversalPetrarch
coding schemes depend on grammatical knowledge included in the dictionaries. In order to
correctly match sentences in production, the event coder needs to know which parts of the en-
tries are direct objects and which are prepositional phrases. Coders thus need to include this
information in their entries by marking them with parentheses or braces. Using this interface,

coders added 1,628 verb phrases to the dictionary.

Verb: [ »a"]
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Search Sentences (Please input key words):

e s - CEm

000:NA
notsure? | n10:Make statement, not specified below

011:Decline comment
Administration Tool 012:Make pessimistic comment
013:Make optimistic comment
014:Consider policy option
015:Acknowledge or claim responsibility
016:Reject accusation, deny responsibility

PP Y S PO

Figure 3: Original interface for adding verb phrases from text

The second approach we took was to use an interface developed by other colleagues on the

project that allows the coders to translate the English verb dictionaries into other languages.
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They describe the interface and the process of creating Spanish language verb dictionaries in
Osorio et al. (2017). The interface provides a structured way for coders to translate each verb
and any direct objects or prepositional phrases into the target language (recall that the verb
alone rarely provides enough detail to categorize the sentence’s event). Specifically, the interface
splits these two tasks into two steps. We used a larger group of native Arabic speakers to provide
idiomatic translations of direct or indirect objects and prepositional phrases into Arabic, as this
requires mastery of both languages. As we discuss in the previous section, the automated event
coder also requires the entries in the verb dictionary to include some grammatical markup
to help it accurately match sentence text with the dictionaries. The team of coders therefore
needed to provide these annotations, which requires a mastery of Arabic grammar. We used a
smaller team of fluent Arabic learners to translate just the individual verbs. To speed this second
process, the interface provided them a list of machine translations and asked them to mark the
correct ones, as well as to add any translations that were not included in the automatically
generated list. Each translation for both the verb itself and the larger verb phrase was done by

one coder and checked over and corrected if necessary by a second coder.

Using this interface, our team of 6 coders were able to translate the English cAMEO dictionary,
with around 9,000 entries, into Arabic in about 5 months of part-time work. This rate works
out to about 5 minutes per entry in the verb dictionary, which includes both training, meetings,
and checking time. The advantages of this approach are great. By translating the English verb
dictionaries that have been developed over decades, we guarantee good coverage over the ca.
250 event categories defined in cAMEO and make our dictionaries roughly comparable with the
English dictionaries. It also greatly reduces the time needed to accumulate entries in the verb
dictionary, especially because extracting verb phrases by frequency is much more difficult than
finding high-frequency actors. The disadvantage of this approach is that it limits the dictionar-
ies to phrases that exist only in English, potentially missing many idiomatic Arabic phrases or

phrases that code the kinds of events that are more prevalent in Arabic text.
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Named entity recognition

In addition to creating actor and verb dictionaries, the team of coders also created new labeled
data to improve Arabic language named entity recognition (NER). Good named entity systems
can dramatically improve the process of discovering prominent people and organizations in
text that have not been added to the dictionaries, making it much faster to tailor dictionaries
to a specific corpus of text. Named entity recognition for place names is also a crucial first step
in geolocating events in text (Halterman 2017), which is important for researchers’ abilities to
study subnational variation in event types. To train the NER system, we used a third-party
web interface called Prodigy,® which suggests possible labels that coders then accept or reject,
making the data annotation process extremely fast. Our coders labeled the named entities in
around 6,000 sentences, which is almost as many annotated sentences as there are in the largest

public corpus NER-annotated Arabic text, OntoNotes.’
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Figure 4: Using Prodigy to train a named entity recognition system
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Conclusions and Recommendations

Using these techniques for developing dictionaries, we were able to complete Arabic actor and
verb dictionaries with coverage equivalent to the English language dictionaries in less than two
years of work, compared to the two decades that the English language dictionaries took to pro-
duce. We have used UniversalPetrarch to generate events from our corpus of millions of Arabic
language sources and expect to make the dataset and comparisons between it and an English

language corpus available after final debugging and quality checking.

We would like to draw conclusions from our process of making dictionaries for event data cod-
ing to help researchers who may produce their own dictionaries in the future. We believe that
the tools we've developed over the past two years and the techniques for dictionary develop-
ment that we've learned can reduce development time even further. The advice that we have
applies both to researchers interested in translating the existing cAMEO dictionaries from En-
glish into a new language, but also researchers developing dictionaries for wholly new event or

actor types in English or another language.

In developing actor dictionaries, we recommend starting by linking the existing English lan-
guage actor dictionaries with Wikipedia and using Wikipedia to provide translations into other
languages. Because we have already performed the linking step and made our dictionaries and
code available, researchers making dictionaries for a new language will need to do very mini-
mal work to get several thousand important people and organizations in their target language.
The second step we recommend is to scrape Wikipedia category pages for actors of interest,
for both translating cAMEO into a new language and for implementing wholly new ontologies.
This process gives good coverage of actors and in the case of people with biographical sidebars,
permits extremely rapid coding. Finally, we recommend extracting actors from the target text

using UniversalPetrarch or using named entity recognition and coding the most frequent ac-
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tors. This step should be performed after the previous two, because our interfaces will skip
actors it already has in the dictionaries. Finally, we do not recommend the original approach
of coding actors from randomly selected sentences. Doing so has the advantage of increasing
the breadth and diversity of actors coded, but most actors that appear using this approach will

be unimportant. Efforts would better be spent on the other three approaches.

In translating verb dictionaries, we highly recommend using the cAMEO verb translation inter-
face described in Osorio et al. (2017). It very quickly provides coverage that is similar to the
existing English dictionaries (for better or worse) in a structured way that works well with stu-
dent coders. It does not, however, work for researchers who are developing wholly new event
categories to study events specific to their research. In this case, or for researchers who are
interested in expanding the coverage of particular CAMEO categories, we recommend the first
interface we developed, with a topic model selection process. To make sure our coders were
generating dictionary entries from politically relevant news stories, we ran a topic model over
our entire corpus of text. We then decided which topics were relevant to our work, and only
sampled sentences with high proportions from those topics, using functionality built into the
interface. For targeted verb development, we recommend running a series of topic models un-
til topics appear that are related to the event type of interest. Sentences to code should then
be drawn from those topics to maximize the chances of coders encountering sentences that

contain the event of interest.

One of the great promises of this new era of automated text analysis in political science is the
ability of researcher to produce new datasets that would have been impossible to create with pre-
vious technology. Off-the-shelf datasets, including the Arabic event dataset we have produced
will play an important role in furthering research, but potentially more insights will come from
researchers developing their own specific datasets for answering their own questions. We hope

that the tools we have built and the knowledge we have gained through this process will help

17



future researchers in making their own event datasets.
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