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Abstract To meet customers’ pressing demands, enterprise
database vendors have been pushing advanced analyti-
cal techniques into databases. Most major DBMSes use
user-defined aggregates (UDAs), a data-driven operator, to
implement analytical techniques in parallel. However, UDAs
alone are not sufficient to implement statistical algorithms
where most of the work is performed by iterative transi-
tions over a large state that cannot be naively partitioned due
to data dependency. Typically, this type of statistical algo-
rithm requires pre-processing to set up the large state in the
first place and demands post-processing after the statistical
inference. This paper presents general iterative state transi-
tion (GIST), a new database operator for parallel iterative
state transitions over large states. GIST receives a state con-
structed by a UDA and then performs rounds of transitions
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on the state until it converges. A final UDA performs post-
processing and result extraction. We argue that the combi-
nation of UDA and GIST (UDA-GIST) unifies data-parallel
and state-parallel processing in a single system, thus sig-
nificantly extending the analytical capabilities of DBMSes.
We exemplify the framework through two high-profile batch
applications: cross-document coreference, image denoising
and one query-time inference application: marginal inference
queries over probabilistic knowledge graphs. The 3 appli-
cations use probabilistic graphical models, which encode
complex relationships of different variables and are powerful
for a wide range of problems. We show that the in-database
framework allows us to tackle a 27 times larger problem
than a scalable distributed solution for the first application
and achieves 43 times speedup over the state-of-the-art for
the second application. For the third application, we imple-
ment query-time inference using the UDA-GIST framework
and apply over a probabilistic knowledge graph, achieving
10 times speedup over sequential inference. To the best of our
knowledge, this is the first in-database query-time inference
engine over large probabilistic knowledge base. We show
that the UDA-GIST framework for data- and graph-parallel
computations can support both batch and query-time infer-
ence efficiently in databases.

Keywords In-database analytics - Query-time inference -
Batch inference - Data-parallel analytics - Graph-parallel
analytics

1 Introduction

With the recent boom in big data analytics, many applications

require large-scale data processing as well as advanced statis-
tical methods such as random walk and MCMC algorithms.
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Connecting tools for data processing (e.g., DBMSes) and
tools for large-scale machine learning (i.e., GraphLab [27,
28]) using a system-to-system integration has severe limita-
tions including inefficient data movement between systems,
impedance mismatch in data representation and data privacy
issues [25,47]. In the database community, there is a renewed
interest in integrating statistical machine learning (SML)
algorithms into DBMSes [18]. Such integration allows both
SQL-based data processing and statistical data analytics, pro-
viding a full spectrum of solutions for data analytics in an
integrated system.

Most SML algorithms can be classified into two classes
in terms of parallel execution. The first well-studied class of
SML algorithms require multiple iterations of the same data.
Such SML methods include Linear Regression, K -means and
EM algorithms, which can be parallelized within each itera-
tion using naive data partitioning. The overall algorithms can
be driven by an outside iteration loop. The parallel imple-
mentation of this class of SML algorithms is supported in
MADIib [11,18] and Mahout [29]. Most commercial data-
bases incorporate the support for such data-parallel SML
algorithms in the form of UDAs with iterations in external
scripting languages.

A second class of SML algorithms involve pre-processing
and constructing a large state with all the data. The state
space cannot be naively partitioned, because the random vari-
ables in the state are correlated with each other. After the
state is built, the algorithms involve iterative transitions (e.g.,
sampling, random walk) over the state space until a global
optimization function converges. Such operations are com-
putation intensive without any data flow. After convergence
is reached, the state needs to be post-processed and converted
into tabular data. We dub this class of SML algorithms state-
parallel algorithms, where the states can be graphs, matrices,
arrays or other customized data structures. Examples of this
type of SML algorithms include MCMC and belief propaga-
tion algorithms.

Several significant attempts have been made toward
efficient computation frameworks for SML both in MPP
databases such as MADIib [11,18] and in other parallel
and distributed frameworks such as Mahout [29], GraphLab
[27,28] and GraphX [54]. However, no previous work
can efficiently support both data-parallel and state-parallel
processing in a single system, which is essential for many new
applications that applies SML algorithms over large amounts
of data. To support such advanced data analytics, the UDA—
GIST framework developed in this work unifies data-parallel
and state-parallel processing by extending existing database
frameworks.

Graph-parallel algorithms are a special type of state-
parallel algorithm whose state is an immutable graph. Exam-
ples of graph-parallel algorithms include inference over large
probabilistic graphical models [23] encoding complex rela-
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tionships between variables and expressively powerful, such
as Bayesian Networks [17] and Markov Random Fields
[38], where the graph-based state can have hundreds of
millions of nodes and billions of edges. While parallel
DBMSes and Map-Reduce frameworks cannot efficiently
express graph-parallel algorithms, other solutions exist such
as GraphLab [27,28] and GraphX [54], both of which have
graph-based abstractions. These graph-parallel systems sim-
plify the design and implementation of algorithms over
sparse graphs using a high-level abstraction, but they miss
the opportunity of using more efficient data structures to rep-
resent the state space of a complete/dense graph, a matrix or
a dynamic graph. For example, if the state is a matrix, repre-
senting it as a generalized graph can make the state building
orders of magnitude slower and hamper inference signifi-
cantly due to worse access pattern over a generalized graph.
Moreover, GraphLab does not support data-parallel process-
ing for state construction, post-processing, tuple extraction
and querying. As shown in the experiments of this paper, it
is time-consuming to build the state, to post-process and to
extract the results. The combined time for these steps can
exceed the inference time.

In this paper we ask and positively answer a fundamental
question: Can SML algorithms with large state transi-
tion be efficiently integrated into a DBMS to support data
analytics applications that require both data-parallel and
state-parallel processing? Such a system would be capable
of efficient state construction, statistical inference, post-
processing and result extraction.

The first challenge to support efficient and parallel large
iterative state transition in-database is the fact that DBMSes
are fundamentally data-driven, i.e., computation is tied to
the processing of fuples. However, iterative state transition-
based algorithms are computation driven and dissociated
from tuples. Supporting such computation needs additional
operator abstraction, task scheduling and parallel execution
in a DBMS.

To solve the first challenge of DBMS computation being
tied to tuples, we introduce an abstraction that generalizes
GraphLab API called Generalized Iterative State Transi-
tion (GIST). GIST requires the specification of an inference
algorithm in the form of four abstract data types: (1) the
GIST State representing the state space; (2) the Task
encoding the state transition task for each iteration; (3) the
Scheduler responsible for the generation and scheduling
of tasks; and (4) the convergence UDA (cUDA) ensur-
ing that the stopping condition of the GIST operation gets
observed.

The second challenge is that the state has to be represented
efficiently inside the DBMS, compatible with the relational
data model. Large memory may be required for large states
during state transition, and new state transition operations
have to be efficiently integrated into an existing DBMS.
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To solve the second challenge of efficient representation
inside DBMS, we implement and integrate the GIST opera-
tor into a DBMS along with user-defined functions (UDFs)
[3] and user-defined aggregates (UDAs) [48]. The efficient
GIST implementation is achieved using the following tech-
niques: (1) asynchronous parallelization of state transition;
(2) efficient and flexible state implementation; (3) lock-free
scheduler. The key of an efficient integration between the
non-relational GIST operator and a relational DBMS engine
is to use UDAs to build large states from DBMS tuples and
to post-process and extract the result tuples from GIST.

The UDA-GIST framework can support a large class of
advanced SML-based applications where both data-driven
computation and large state transition are required. The spe-
cific contributions we make with UDA-GIST framework are:

— We propose a general iterative state transition (GIST)
operator abstraction for implementing state-parallel
SML algorithms. We provide insights and details into
how a high performance implementation of GIST can be
obtained in a DBMS.

— We explain how a GIST operator implementing the
abstraction can be efficiently integrated as a first-class
operator in a DBMS. The deep integration of GIST and
UDA results in the UDA-GIST framework. We intend the
framework to be general for most SML algorithms with
support for both data-parallel and state-parallel compu-
tations. Compared with GraphLab, the framework trades
off implementation complexity for expressiveness and
performance. While the application developers may need
to implement their own scheduler for synchronization and
deadlock resolution, they are given the flexibility to spec-
ify their own state representation and parallel execution
strategy, which as shown in our experiments can achieve
orders-of-magnitude performance gain. The main mer-
its of the UDA-GIST framework are: (1) building state,
post-processing and extracting results in parallel; (2) uni-
fying data-parallel and state-parallel computations in a
single system; (3) representing states using more compact
application-specific data structures; (4) implementing
application-specific scheduler for higher degree of par-
allel execution; (5) providing an efficient mechanism to
detect global/local convergence.

— We exemplify the use of the UDA-GIST abstraction
by implementing three representative SML algorithms
and applications: Metropolis—Hastings algorithm [2]
for cross-document coreference, loopy belief propaga-
tion [33] for image denoising and Gibbs Sampling [6]
for query-time marginal inference. We show that the
applications can be executed using the extended DBMS
execution engine with the UDA-GIST framework. These
three applications exemplify the efficiency of the UDA—
GIST framework for large classes of state-parallel SML

methods such as Markov-chain Monte Carlo and message
passing algorithms.

— We show that UDA-GIST framework results in orders-
of-magnitude speedup for the three exemplifying appli-
cations comparing with state-of-the-art systems. For
the first application, using a similar coreference model,
features and dataset as described in a recent effort at
Google [44], the UDA-GIST system achieves compa-
rable results in terms of accuracy in 10 min over a
multi-core environment, while the Google system uses a
cluster with 100-500 nodes. Results show that this UDA—
GIST system can also handle a 27 times larger dataset
for coreference. For the second application, we show
that UDA-GIST outperforms GraphLab’s implementa-
tion of image denoising with loopy belief propagation
by three orders of magnitude for state building and post-
processing, and up to 43 times in overall performance.
For the third application, we can achieve one order of
magnitude of speedup over the sequential implementa-
tion.

This paper is an extension to the UDA-GIST [26] paper,
providing in-database query-time inference over probabilis-
tic graphical model to unify in-database batch and query-time
inference using UDA-GIST framework.

To exemplify query-time inference, we implement prob-
abilistic marginal inference over probabilistic knowledge
graph. However, inference over large probabilistic knowl-
edge graph is prohibitive, and existing systems [9,35] are
primarily designed for batch processing, not suited for inter-
active queries. Motivated by the scalability issue of sampling
methods and lack of efficient query-time inference over
probabilistic knowledge graph, we implement the sampling
methods in UDA-GIST framework to speed up the infer-
ence. However, real-time response still cannot be achieved
due to the sheer size of the graph. Thus we apply a k-hop
approach to extract the k-hop network, centered around the
query node, to approximate the marginal probability. The
intuition behind the k-hop approach is that the farther away
the node is from the query node, the less influence the node
has on the query node. By selecting the k-hop network, the
inference is focused on the important selection to query node.
User can specify the number of hops to achieve the trade-
off between accuracy and time. The approximation error
decreases as the number of hops increases. Results show that
it can achieve accurate results with negligible error at query
time (Figs. 14, 15).

Specifically, the additional contributions we make in this
paper are:

— We present the k-hop query inference to approximate

the inference over whole factor graph, which provides
a trade-off between time and accuracy. The experiment
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results show the k-hop approach achieves orders of mag-
nitude of speedup while achieving good approximation
with small number of hops in real datasets.

— We parallelize the Gibbs sampling using UDA-GIST
framework. The results show an order of magnitude
speedup over single-threaded Gibbs sampling.

In the rest of this paper, we first give a system overview in
Sect. 2, and present GIST API in Sect. 3. Then we introduce
the three applications, including the background knowledge
and algorithms, and UDA-GIST implementation of the algo-
rithms in Sects. 4, 5 and 6, respectively. Finally, we show that
the GIST and an efficient integration with DBMS systems
result in orders-of-magnitude performance gain in Sect. 7.

2 System overview

As we explained in the introduction, state-parallel SML algo-
rithms involve iterative state transitions over a large state
space. The execution pipeline for such SML tasks is shown
in Fig. 1. UDAs are used to construct the in-memory state
from the database tables. The GIST takes the state from the
UDA and performs iterative state transition over the shared
state. The cUDA inside the GIST is used to evaluate the con-
vergence of the state. Finally, the UDA Terminate function
to the right of GIST operator supports post-processing and
converting the converged final state into relational data.

We design an extended DBMS system architecture that
supports the GIST operator and GIST execution engine for
iterative state transition over large state space based on
a shared-memory paradigm. GIST operators together with
data-driven operators in DBMSes such as SQL queries and
UDAs can provide efficient and scalable support for a wide
spectrum of advanced data analysis pipelines based on SML
models and algorithms.

As shown in Fig. 2, the GIST operators are implemented
as first-class citizens, similar as UDAs in an DBMS. UDAs
and GIST operators are implemented using two different

APIs and are supported by two different execution mod-
els. In this paper, the data processing is performed over
multi-core machines. Different inference algorithms can be
implemented using the GIST and UDA APIs, including
loopy belief propagation (LBP) and Markov-chain Monte—
Carlo (MCMC) algorithms. Using such inference algorithms,
different statistical models can be supported to develop
applications such as image denoising and cross-document
coreference.

The UDA-GIST framework expands the space of feasible
problems on one single multi-core machine and raises the
bar on required performance for a complicated distributed
system. As an example, our experiments for the coreference
application use a 27 times larger dataset than the state-of-
the-art in a distributed cluster with 100-500 nodes [44]. One
premise of this work is that a single multi-core server is
equipped with hundreds of gigabytes of memory, which is
sufficiently big to hold the states of most applications. Sec-
ond, a multi-core server is inexpensive to install, administer
and is power efficient. It is hard to acquire and maintain a
cluster with hundreds of nodes.

The UDAs follow the traditional API, consisting of three
functions: Init (), Accumulate () and Merge (). The

Applications

Inference
[ LBP }[ MCMC J methods
RDBMS ‘ ’ ‘ ‘ :
Operators UDA GIST . Operators
Data-parallel and State-parallel | Bxecution
Execution Engine . engine
¢ ¢ & & @ |
= 11 i == || Multi-core
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Fig. 2 An extended DBMS architecture to support data-parallel and
state-parallel analytics
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Fig. 1 ML Pipeline with large state transition. UDAs are used to con-
struct the in-memory state from the database tables. The GIST takes the
state from the UDA and performs computation over the shared state. The
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cUDA inside the GIST is used to evaluate the convergence of the state.
The UDA Terminate function to the right of GIST supports converting
the state into relational data
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Init is used to set up the state appropriately before any
computation begins. It is similar to a constructor in many
high-level languages. Accumulate takes a tuple as input
and adds the tuple to the state that it is maintaining. Tuples
can be read from a database or files in the local file system.
Merge combines the state maintained by two UDA instances
of the same type. It must be associative, so that states do not
need to be merged in any particular order for computational
efficiency.

3 General iterative state transition (GIST)

Compared to the framework proposed by GraphLab [27],
GIST API supports more general data structure to represent
the state and supports more flexible scheduler for parallel exe-
cution. While, by design, GraphLab supports only immutable
graph-based data structures, we design GIST to support gen-
eral data structures to represent large state spaces, including
arrays, matrices, and static/dynamic graphs. In addition, we
further generalize GraphLab’s scheduler in order to allow
efficient, parallel execution. In particular, we split the sched-
uler into a single global scheduler (GS) and multiple local
schedulers (LSs). The GS splits the work into large chunks,
one for each local scheduler. The local scheduler manages
the chunk and further partitions it into tasks. As we will see,
these generalizations allow us to implement inference algo-
rithms more efficiently.

In the rest of the section, we introduce the GIST API and its
parallel execution model over a multi-core environment. We
then discuss the implementation details of GIST in DataPath
and PostgreSQL and discuss ways to implement GIST in
other DBMSes.

3.1 GIST operator API

Like the treatment of UDA in DBMSes, GIST is an abstract
interface that allows the system to execute GIST operators
without knowledge of the specifics of the implementation. In
this section, we present such an interface and refer to it as the
GIST API. When designing the API, we have the following
desirable properties in mind:

— Do not restrict the state representation Any such restric-
tion limits the amount of optimization that can be
performed. For example, GraphLab limits the state to
generalized graphs, which deteriorate the performance.
Graph-based state in Metropolis—Hastings algorithm in
CDC forces the graph to be a fully connected graph.
The CDC requires full consistency, but the full consis-
tency locks all the nodes in the graph—which means no
parallelization can be achieved. In the image denoising

application, it achieves orders-of-magnitude speedup by
using a matrix state instead of a graph state.

— Allow fine grained control over the parallel execution
The applications are free to use their own synchro-
nization primitives. Knowledge of the specifics of the
problem allows selection of custom execution strategies.
The problem may be better off to use lock-free sched-
ulers and the best effort parallel execution [7,30], which
relaxes the sequential consistency enforced in GraphLab
to allow higher degree of parallelism.

— Allow efficient mechanism to detect state convergence
Efficient mechanism is needed to detect the convergence
in order to make termination decision. We design a con-
vergence evaluation facility to gather statistics in parallel
during task execution and make termination decision at
the end of each round. This facility enables the com-
putation of global statistics in parallel during inference.
This mechanism is not supported in either MADIib or
GraphLab.

— Efficient system integration Inference algorithms might
require large initial states to be built, then post-processing
and extraction of final results from such states. The GIST
operator needs to fake over states built by other means
and allows efficient post-processing and extraction of the
result. However, this type of mechanism is missing in
GraphLab.

To achieve the above and allow a systematic GIST spec-
ification, all GIST operators are represented as a collection
of five abstract data types: Task, Local Scheduler, Con-
vergence UDA, GIST State and GIST Terminate. The
GIST state will make use of the Task, Local Scheduler, Con-
vergence UDA and GIST Terminate to provide a complete
inference model. We discuss each part below starting with
the sub-abstractions and finishing with the GIST State.

Task A task represents a single transition that needs to be
made on the state and contains any information necessary
to perform this transition. It may be a custom-made class,
a class from a pre-made library, or even a basic C++ type.
It is the job of the Local Scheduler to know what Tasks it
needs to produce and the GIST to know what needs to be
done to the state given a certain task. Essentially, the Task
allows separation of planning and execution.

Local scheduler (LS) A LS is responsible for producing the
Tasks used to perform state transitions. If the ordering of
these Tasks is important, it is up to the LS to produce them in
the correct order. Conceptually, the tasks specified by a LS
are executed sequentially, but multiple LSs and their tasks
may be executed in parallel. It is important to point out that
the LSs do not execute tasks, they just specify which tasks
should be executed. Effectively, the LSs contain part of the
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execution plan to be used later by the GIST state. There is no
requirement for the LSs to form a task sequence in advance—
creating the task sequence on the fly is allowed. A LS has the
following public interface:
class LocalScheduler {

bool GetNextTask( Task& );
}i

The GetNextTask () method stores the next task to be

run in the location specified by the parameter. If there are
no more tasks to be run, the method should return false, and
true otherwise. In addition to this public interface, the LS can
have one or more constructors that the GIST state is aware
of.
Convergence UDA (cUDA) All inference algorithms need to
detect convergence in order to make termination decisions.
Detecting convergence requires statistics gathering followed
by a termination/iteration decision. To allow such a mecha-
nism to be specified, GIST requires a cUDA to be provided.
A cUDA is a specialization of the UDA abstraction that is
used to determine whether the GIST is done with inference.
The cUDA is executed in parallel, much like a regular UDA.
One cUDA instance is associated with one LS and gathers
local statistics during the tasks execution for the correspond-
ing LS through the use of Accumulate. At the end of
a round, the cUDA instances are merged using Merge to
obtain global statistics to allow the termination/iteration deci-
sion to be made through the method ShouldIterate ().
Specifically, the cUDA API is:

class cUDA {
void Init();
void Accumulate(...);
void Merge( cUDA& );
bool ShouldIterate();

GIST state The GIST state represents the shared data used
by threads of execution to perform the inference task. It con-
tains all information that is global to all GIST functionalities
and allows execution of the abstract execution model (AEM).
The AEM is a declarative execution model that allows the
specification of parallelism without a commitment to a spe-
cific execution. First, the AEM of GIST specifies that the
state transformation proceeds in rounds. Convergence is only
checked on a round boundary, and thus inference can be
stopped only at the end of a round. Second, the work to be
performed in a round is split into many Tasks, which are
grouped into bundles controlled by local schedulers (LSs).
Tasks in a bundle are executed sequentially, but multiple
threads of execution can be used to run on independent bun-
dles. The LSs create/administer the Task bundles and provide
the next task in a bundle, if any. The partitioning of a round’s
tasks into bundles is performed by the GIST State abstrac-
tion via the PrepareRound method and is, in fact, the
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planning phase of the round. This method plays the role of
the global scheduler. This method should not perform any
work—the user should assume that there is no parallelism
during the execution of PrepareRound. The system pro-
vides a numParts hint that indicates a minimum number of
LSs that should be created to take full advantage of the sys-
tem’s parallelization. To perform the work specified by each
LS, the GIST State abstraction offers the method DoStep.
This method executes the task provided as the input, i.e., one
transformation of the state, and updates the statistics of the
provided cUDA. At the end of around, i.e., when all the tasks
specified by all the LSs are executed, the system will merge
the cUDA states and determine whether further iterations are
needed. The execution proceeds to either another round or
result extraction.

It is important to point out that this is just an abstract
execution model. The execution engine will make the low-
level decisions on how to break the work into actual parallel
threads, how tasks are actually executed by each of the
processors, how the work is split between GIST and other
tasks that need to be performed, etc. The AEM allows enough
flexibility for efficient computation while keeping the model
simple.

The GIST constructor may either take constant literal
arguments or pre-built states via state passing and prepares
the initial state. Typically, a UDA is used to build the initial
state in parallel, and to provide it in a convenient form to the
GIST through the constructor.

The PrepareRound method produces the LSs and
cUDAss for that round and places them into the vector pro-
vided. The integer parameter is a hint provided to the GIST
for the number of work units that it can use. It is fine to pro-
vide more work units than the hint, but providing less will
negatively impact the amount of parallelization that can be
achieved. The DoStep method takes a Task and a cUDA and
performs a single state transition using the information given
by the Task. Any information related to the step’s effect on
the convergence of the GIST is fed to the cUDA.
class GIST {

GIST(...);

typedef pair<LocalScheduler*, cUDA*> WorkUnit;

vector<WorkUnit> WorkUnitVector;

void PrepareRound (WorkUnitVector&, int numParts) ;
void DoStep (Task& task, cUDA& agg) ;

GIST terminate The Terminate facility allows for tuples to
be post-processed and produced in parallel as long as the
results can be broken into discrete fragments that have no
effect on one another. The Terminate must have the following
interfaces:

int GetNumFragments (void) ;

Iterator* Finalize(int) ;
bool GetNextResult (Iterator*, AttributelType&,...);
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The GetNumFragments method is called first to return the
number of fragments that the GIST can break the output into.
The Finalize method takes as input the ID of the fragment
to be produced and returns an iterator to keep track of tuples
to be produced. The GetNextResult method uses the iterator
and gets the actual tuples in location specified by parameter.

3.2 GIST execution model

Using the above API, the GIST can be executed as detailed
in Algorithms 1 and 2. Algorithm 1 first initializes the GIST
state (line 1) and organizes the work into rounds (lines 2—12).
For each round, the local schedulers are produced into the list
L (line 3) and then for each available CPU, an available local
scheduler and cUDA are used to perform one unit of work
(line 10). All the work proceeds in parallel until the unit
of work terminates. In order to keep track of global work
termination for the round, the workOut variable keeps track
of the number of work units being worked on. When all work
units are done and list L is empty, all the work in this round
has finished. The variable gUDA is a global cUDA that is
used to determine whether we need more rounds. Notice that
round initialization and convergence detection are executed
sequentially.

Algorithm 1: GIST Execution

Require: S_0 GIST Initial State, numCores, maxWork
1: S< GIST State(S_0)
2: repeat
3: L+« S.PrepareRound(numCores)
workOut < 0
gUDA <« Empty cUDA
repeat
C <« AvailableCPU
w <« Head(L)
9: workOut <— workOut+1
10: C.PerformWork(w, maxWork, L, gUDA)
11:  until L.Empty() AND workOut ==
12: until !gUDA.Shouldlterate()

e AR A

Algorithm 2: PerformWork

Require: w WorkUnit, maxWork, L 1ist<WorkUnit>, S GIST
state, gUDA

1: ticks < 0

2: repeat

3:  t < w.first. GetNextTask()

4:  S.DoStep(t, w.second)

5: until ticks>=maxWork OR t=empty

6: if ticks=maxWork then

7:  L.Insert(w);

8: else

9:  gUDA Merge(w.second)

10: end if

11: workOut < workOut-1

Parallelism of the GIST execution is ensured through par-
allel calls to PerformWork. As we can see from Algorithm 2,
GetNextTask() is used on the local scheduler corresponding
to this work unit to generate a task (line 3) and then the work
specified by the task is actually executed (line 4). The process
is repeated maxWork times or until all the work is performed
(lines 2-5). Lines 610 detect whether we need more work on
this work unit and whether convergence information needs to
be incorporated into gUDA (this work unit is exhausted). The
reason for the presence of maxWork is to allow the execution
engine to adaptively execute the work required. If maxWork
is selected such that the function PerformWork executes for
10-100ms, there is no need to ensure load balancing. The
system will adapt to changes in load. This is a technique
used extensively in DataPath. In practice, if numCores argu-
ment of GIST Execution is selected to be 50% larger than the
actual number of cores and maxWork is selected in around
1,000,000, the system will make use of all the available CPU
with little scheduling overhead.

3.3 GIST implementation in datapath + GLADE

We implement GIST as part of the GLADE [39] framework
built on top of DataPath [1] for cross-document corefer-
ence and image denoising. GLADE has a very advanced
form of UDA called Generalized Linear Aggregate (GLA)
that allows large internal state to be constructed in parallel
and to be passed around to constructors of other abstrac-
tions like other GLAs or, in this case, GIST States. The
above GIST execution model fits perfectly into DataPath’s
execution model. We add a waypoint (operator), GIST, to
DataPath that implements the above execution model. The
user specifies the specific GIST by providing a C++ source
file implementing objects with the GIST API. The code gen-
eration facility in DataPath is used to generate the actual
GIST Operator code around the user provided code. The plan-
ning part of the GIST Operator is executed by the DataPath
execution engine in the same manner as the UDA, Join, Filter
and other operators are executed. Through this integration,
GIST operator makes use of the efficient data movement, fast
I/O and multi-core execution of DataPath. Since the actual
code executed is generated and compiled at runtime, the infer-
ence code encoded by GIST is as efficient as hand-written
code.

In order to support the large states, which the GIST
operator requires as input, we extended the GLA (Data-
Path+GLADE’s UDA mechanism) to allow parallel con-
struction of a single large state (to avoid costly merges) and
pass by STATE mechanism to allow the state to be efficiently
passed to the GIST operator. These modifications were rela-
tively simple in DataPath due to the existing structure of the
execution engine.
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3.4 GIST implementation in PostgreSQL

We also implement GIST using MADIib [18] framework in
Postgres for marginal inference over probabilistic knowledge
graphs. The implementation follows the MADIib program-
ming paradigm where the core of traditional SQL-SELECT...
FROM... WHERE ...GROUP BY is used for orchestrating
bulk data processing. After the data are prepared with the
SQLs, it uses SQL/Python function to drive the algorithm.
The SQL statements hide a lot of the complexity present in
the actual operation making the network extraction extremely
succinct. The database solution also enables us to do network
extraction in a large dataset, which cannot fit into mem-
ory. The inner/core part of the machine learning/statistical
methods are implemented using UDF/UDA with the C++
abstraction layer, which provides type bride to enable user to
write vanilla C++ code. However for the state-parallel algo-
rithms, where the state cannot be naively partitioned, the
UDA is not a natural fit. We simulate the UDA-GIST inter-
face to launch multiple threads in the finalize function. In
order to enable user to run marginal inference query interac-
tively on probabilistic knowledge graph in an RDBMS, we
also implement a k-hop approximation which is elaborated
in Sect. 6.

3.5 Discussion: implementing GIST in other DBMSes

In general, adding an operator to a DBMS is a non-trivial task.
Both open source and commercial engines have significant
complexity and diverse solutions to the design of the database
engine. In general, there are two large classes of execution
engines: MPP and shared-memory multi-threaded. We indi-
cate how GIST can be incorporated into these two distinct
types of engines.

MPP DBMSes, such as Greenplum, have a simple execution
engine and use communication to transfer data between the
execution engines. In general, the MPP engines are single-
threaded and do not share memory/disk between instances.
In such a database engine, it is hard to implement GIST since
it requires the global state to be shared between all instances.
On systems with many CPU cores and large amounts of mem-
ory in the master node, this obstacle could be circumvented
by launching a program in the Finalize function of UDA
which simulates the GIST. Such a program would have a
dedicated execution engine that is multi-threaded and will
perform its own scheduling. The work_mem parameter of
the master node should be configured to be large enough
to hold the entire state. Several limitations can be seen in
this naive integration without DBMS source modification.
Firstly, it cannot take advantage of other slave nodes in the
MPP-GIST stage after the state is constructed in the UDA.
Secondly, there is no support to convert the GIST state into
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Fig. 3 GIST coreference pipeline. A UDA is used to construct the
initial hierarchical model where each entity has one mention. The UDA
passes the state into GIST, the GIST does parallel MCMC inference
over the shared state until the state converges

DBMS relations in parallel. Lastly, converting from GIST
internal state to a single value requires an extra copy of mem-
ory to store the state.

Shared memory DBMSes, e.g., Oracle and DataPath, usu-
ally have sophisticated execution engines that manage many
cores/disks. GIST, a shared memory operator, is a natural fit
to the shared-memory DBMSes as evidenced by the deep
integration of GIST to DataPath. To have a genuine integra-
tion to this type of DBMS, The UDA should be extended to
support passing the constructed state into GIST. The GIST
operator needs to make use of the low-level CPU scheduling
facilities. Specifically how this can be accomplished depends
on the specific DBMS implementation. As a practical integra-
tion, the source code of the integration of GIST to DataPath
can be found in [14]. To have a shallow integration, the
approach is similar as discussed in the integration of GIST
to MPP DBMSes.

4 Application I: Cross-document coreference

In this section we first provide background knowledge of
cross-document coreference [2] and the corresponding algo-
rithms in Sect. 4.1. Then we discuss our implementation of
those algorithm using UDA-GIST framework in detail in the
following subsections.

Specifically for the implementation, the cross-document
coreference process involves two distinct stages. The first
stage builds the coreference initial state using a UDA, as
illustrated in Sect. 4.2. Then a GIST parallel implementa-
tion of Metropolis—Hasting algorithm [10] is employed on
the initial state until the state has been converged, which is
explained in Sect. 4.3. Figure 3 depicts the implementation
pipeline of cross-document coreference.

4.1 Metropolis—Hastings for cross-document
coreference

Cross-document coreference [2] (CDC) is the process of
grouping the mentions that refer to the same entity, into one
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mentions (green circles), 3 entities (blue outlined ellipses) and CZ =6
factors. One affinity factor is shown with solid line, and 5 repulsion fac-

entity cluster. Two mentions with different string literals can
refer to the same entity. For example, “Addison’s disease”
and “chronic adrenal insufficiency” refer to the same disease
entity. On the other hand, two mentions with the same string
literal can refer to different entities. For example the name
“Michael Jordan” can refer to different people entities. While
CDC is a very important task, the state-of-the-art coreference
model based on probabilistic graphical models is computa-
tionally intensive. A recent work by Google Research shows
that such model can scale to 1.5 million mentions with hun-
dreds of machines [44].

4.1.1 Pairwise factor model for coreference

A pairwise factor model is a state-of-the-art coreference
model [44]. As shown in Fig. 4, the model consists of two
types of random variables: entities (E) and mentions (M).
Each mention can be assigned to one and only one entity,
and each entity can have any number of mentions. There is
one factor between any pair of mentions m; and m ;. If the
two mentions are in the same entity, the factor is an affin-
ity factor v, (m;, m); otherwise, the factor is a repulsive
factor ¥ (m;, m j). Mathematically, we seek the maximum a
posteriori (MAP) configuration:

Ya(m;i,mj)

arg max p(e) = arg max Z[ Z

€€ “m;,mj€e,m;FEm;

+ > wr<mi,mj)] (1

mi€e,m e

Computing the exact e is intractable due to the large space
of possible configuration. Instead, the state-of-the-art [44]
uses Metropolis—Hastings sampling algorithm to compute
the MAP configuration.

4.1.2 Hierarchical model for coreference

A hierarchical model is presented in a recent paper [44] to
scale up CDC which improves the pairwise factor model

GIST: parallel MCMC GIST: post-processing & result extraction

tors with dashed lines. The right graph is the hierarchical model with
extra two layers: the super entity and entity. The super entity is identi-
fied by a shared token in the top level. The entity represents a cluster of
mentions that refer to the same real-world entity

using a two-level hierarchy of entities in addition to the base
mentions: entities and super entities. Given the following
concepts:

— T(m) : a set of tokens in the string literal of mention .

— T(e) = U; T (m;) :aunion of tokens in the set of mentions
that belong to entity e.

— P(eg :m — e, T(es) NT(e;) # ¥): aproposal to move
mention m from source ey to destination e; iff the two
token sets T (e;) and T (e;) have at least one common
token.

A super entity (SE) is amap (key, value), where the
key is a token ¢ and the value is a set of entities, whose
token set T (e) contains token ¢. The SE is used as an index
to quickly find the target entity in a proposal which has at
least one common token with the source entity. The use of
SE would increase the effectiveness of the sampling process
P to achieve further scalability.

4.2 GIST building state in parallel

As explained in Sect. 2, the GIST operator relies on a UDA
to construct the initial state with data in the mention relation.
The UDA builds the initial state required for coreference by
accumulating the super entity, entity and mention data struc-
tures, and the relationships among them. This is performed
via the Init, Accumulate and Merge UDA functions:

Init Build containers for super entities, entities and men-
tions.

Accumulate The mention relation contains three columns:
mention id, the mention string and the surrounding context
of the mention. Each Accumulate call builds up one men-
tion. Several steps are needed to process a mention. First, the
mention string and the mention context are tokenized. Then
all the stop words in the mention string are removed. Last,
the mention tokens and context tokens are sorted to speed up
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the calculation of cosine distance at the inference stage. Each
Accumulate also builds one entity by taking the mention
as input since each entity is initialized with one mention at
the initial state (Fig. 3).

Merge Merge simply merges the lists of super entities, enti-
ties and mentions.

4.3 GIST parallel MCMC sampling
4.3.1 Technical issues

When implementing an application such as CDC using par-
allel MCMC sampling, a number of technical difficulties
emerge. We briefly discuss one of them and our solution
below.

Deadlock prevention The MCMC-based coreference algo-
rithm we use needs to move mentions between entity clusters.
This process involves inserting and removing mentions from
entity data structures. Since these data structures are not
atomic, race conditions can appear that can result in system
crashes. The classic solution is to use locks to guard changes
to the source and destination entities. Since two locks are
needed, deadlocks are possible. To prevent this, we acquire
the locks in a set order (based on entity ID).

4.3.2 GIST parallel MCMC implementation

The parallel MCMC can be expressed using the GIST with
abstract data types: Task, Scheduler, cUDA and GIST
state.

Task A task in the GIST implementation is a MCMC pro-
posal which contains one source entity and one target entity.
Furthermore, the DoStep function acquires the locks of the
source entity and target entity in order. After obtaining the
locks, it picks a random mention from the source entity, and
then it proposes to move the source mention to the target
entity. The task also keeps one reference to its LS since the
task will consume some computation units, where the out-
standing computation units are maintained in its LS.

Scheduler The global scheduler assigns the same amount
of computation units, which is defined as one time factor
computation between two mentions to each LS. The number
of computation units is stored in variable numPairs in the
LS. Each LS does Metropolis—Hastings inference until the
computation units are consumed for the current iteration.

cUDA The cUDA is used to specify the MCMC inference

stopping criteria. Usually, the convergence will be deter-
mined by a combination of the following criteria: (a) the
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Algorithm 3: Metropolis—Hastings DoStep

Require: Task& task, LocalScheduler& Is
: ey < rand(E)

: my < rand(eg)

ct =rand(T (ey));

c e < rand(S(1))

. lock ey, e; in order

s if e%; > rand[0, 1] then

accepted <— True

. end if

. if accepted then

10: ey < e;—m

11: e < e +m

12:  move the similar mentions in ¢; to ¢;
13: end if

14: unlock ey, ¢; in the reverse order;

0N UNE W=

o

maximum number of iterations is reached, (b) the sample
acceptance ratio is below threshold, and (c) the difference
of F1 between current iteration and last iteration is below
threshold. The criterion of maximum number of iterations
can be simply implemented by making sure the current iter-
ation is not greater than the maximum number of iterations
in the ShouldIterate (). To measure the sample accep-
tance ratio, each cUDA will measure the number of accepted
proposals and the total number of proposals. Then all the
cUDAs will be merged into one state to calculate the overall
acceptance ratio. To use the third criterion, the cUDA needs
to keep track of the last iteration F1 and current iteration F1
in the cUDA.

GIST state The GIST state takes the state constructed in the
UDA. In addition to the UDA state, GIST state defines the
DoStep function that transforms the state by working on
one task over the state. The DoStep function defined in the
GIST state is described in Algorithm 3. Line 1 generates
a random source entity from the entity space. Line 2 picks
a random mention in the source entity. Line 3 produces a
random token ¢ in the token set of the source entity. Line
4 gets a random target entity in the super entity S(¢). Lines
5 and 14 acquire/release the locks of the source entity and
target entity in order. Lines 6-13 perform one sample over the
state. Line 12 moves all the similar mentions in the source
entity to target entity.

S Application II: Image denoising

In this section we first provide background knowledge of
image denoising and the loopy belief propagation algorithm
in 5.1. Then we discuss our implementation using UDA-
GIST framework, depicted in Fig. 5. The implementation
includes: (1) state building using UDA illustrated in Sect. 5.2;
(2) GIST parallel LBP implementation in Sect. 5.3. LBP is
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Fig. 5 GIST LBP pipeline. A UDA is used to construct the graph state. The UDA passes the state into GIST and the GIST does parallel loopy
belief propagation over the shared state until the state converges, which is specified by the convergence UDA

one of the example application implemented in GraphLab.
We show that our GIST API can be used to implement LBP
and the UDA-GIST interface can be used to support the state
construction, inference, post-processing and results extrac-
tion.

5.1 Loopy belief propagation for image denoising

The second SML application is image denoising, which is
the process of removing noise from an image that is cor-
rupted by additive white Gaussian noise. This is one of the
example applications in GraphLab, which uses a 2D grid
as the probabilistic graphical model, and 2D mixture as the
edge potentials, which enforces neighboring pixels to have
close color. The self-potentials are Gaussian centered around
the observation. The output is the predicted image. Belief
Propagation (BP) [16] is an inference algorithm on Bayesian
networks and Markov random fields through message pass-
ing. Belief propagation operates on a bipartite factor graph
containing nodes corresponding to variables V and factors
U, with edges between variables and the factors in which
they appear. We can write the joint mass function as:

P =[] futx) )

uel

where x,, is the vector of neighboring variable nodes to the
factor node u. Any Bayesian network or Markov random field
can be represented as a factor graph. The algorithm works by
passing real valued functions called “messages” along the
edges between the nodes. These contain the influence that
one variable exerts on another.

A message from a variable node v to a factor node u is
the product of the messages from all other neighboring factor
nodes.

My—su(Xy) = H

u*eN @)\{u}

P —p (Xy) (3

where N (v) is the set of neighboring (factor) nodes to v. A
message from a factor node u to a variable node v is the
product of the factor with messages from all other nodes,
marginalized over all variables except x and v:

v = D fux) ]

X, 1X] =Xy v¥eN (u)\{v}

Moyt (Xy). 4

BP was originally designed for acyclic graphical models.
When BP is applied as an approximate inference algorithm
over general graphical models, it is called loopy belief prop-
agation (LBP), because graphs typically contain cycles. In
practice, LBP converges in many practical applications [20].

5.2 Building GIST state in parallel

LBP is implemented in GraphLab using a generalized graph
data structure since GraphLab uses a generalized graph as its
underlying state, where any vertex can connect to any number
of vertices either directed or undirected. In many cases, this
is not the most efficient representation of the state space.

GIST API can efficiently support different data structures
to represent the large state space. We implement this applica-
tion model using two data structures: graph-based LBP and
matrix-based LBP.

5.2.1 Graph-based GIST state

The GraphLab graph state representation is replicated in the
GIST graph-based state, where the representation is achieved
by maintaining a vector of all the vertices and a vector of
all the edges. In addition, two vectors are maintained for
each vertex: one vector to keep track of the edge IDs of the
incoming edges and the other vector to keep track of the edge
IDs of the outgoing edges.

Two UDAs are required to build the initial state. The
vertexUDA builds up the graph nodes using the vertex
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relation. The second UDA edgeUDA takes the ver texUDA
and edge relation as inputs to produce the final graph state.
For simplicity, we only shows the implementation of the
vertexUDA.

Init In Init, the vertexUDA graph state is set up by allo-
cating space for the vertex vector and two edge vectors for
each vertex.

Accumulate Each tuple in the vertex relation is uniquely
mapped to one element in the graph state. It achieves massive
parallelism since the insertion of tuples into the graph state
is done in parallel.

Merge The Merge function is left empty since the graph
vertex state has been built in the Accumulate function.

5.2.2 Matrix-based GIST state

The above graph data structure is too general to exploit the
structure in the problem: The pixel neighbors are always the
up, down, left and right pixels in the image. A matrix rep-
resentation captures this connectivity information in a very
compact way—the matrix can be thought of as a highly spe-
cialized graph. Using a matrix data structure instead of a
general graph data structure can significantly reduce the state
building time since the state can be pre-allocated and the state
initialization can be done in parallel. An edgeUDA to con-
struct the edges is not needed in a matrix-based state since
the edge connectivity is implicitly stored. Moreover, the per-
formance of the inference algorithms developed on top of the
data structure can be speeded up. In one run of the vertex pro-
gram for one vertex, graph-based state requires a sequential
access to the in-edge vector and out-edge vector to find the
edge IDs and #|edges| random accesses to the global edge
vector to modify the edge data.

In contrast, in a matrix state, it only requires one sequen-
tial scan to the edge data since the edge data for the vertex
are maintained locally for each vertex. The detailed UDA
implementation is described inthe Init,Accumulate and
Merge paragraphs.

Init In the Init function, a two dimensional matrix state
for LBP inference is preallocated by taking the image dimen-
sions.

Accumulate Each row in the vertex table stores a vertex id
vid and the vertex’s prior marginal probabilities. A vid
uniquely maps to one cell in the matrix state. Thus, it is
naively parallel since the initial data assignment for each
element in state is independent.

@ Springer

Merge no code is specified in Merge since the state has
been successfully built with only using the Init and
Accumulate.

5.3 GIST parallel LBP implementation

The implementations of GIST parallel LBP based on the
graph state and matrix state are almost identical with the help
of GIST abstraction. For simplicity, only the matrix-state-
based LBP implementation is described by demonstrating
the implementation of the five abstract data types.

Task One task in the GIST LBP involves polling one ver-
tex from the LocalScheduler (LS) queue and computing the
belief based on the messages passed by its neighbors, then
computing and sending new messages to its neighbors. Thus
the Task contains one vertex id. It also keeps a reference to the
LS since new task may be dynamically created and pushed
back into the current LS.

Scheduler The global scheduler partitions the workloads
into local schedulers evenly by assigning the same number of
vertices into each LS. If one vertex needs to be resampled, a
new task is generated and is pushed back to the end of the LS’s
task queue. There are no locks needed to extract tasks from
LS since no two threads share a LS. In GraphLab, the new
task might be inserted into another LS’s task queue for the
purpose of load balance. Although GraphLab has near-ideal
load balance as shown in the experiment but at the cost of sig-
nificant locking, which hampers the performance. GIST LBP
implementation also relaxes sequential consistency enforced
by GraphLab to allow higher degree of parallelism.

Convergence UDA The convergence criterion can be that the
maximum number of iterations is reached or the residual of
message value is below the terminate bound.

GIST state The GIST state takes the state constructed in the
LBP UDA. In addition the UDA state, the GIST state defines
the DoStep function that transforms the state by working on
one task over the state. The DoStep function defined in the
GIST state is described in the Algorithm 4. Lines 1 and 2
calculate the coordinates of the current vertex and the cur-
rent vertex’s neighbors. Lines 3-5 calculate the marginal
probabilities (beliefs) based on the messages passed by its
four neighbors. Lines 6-12 calculate the new messages to
its neighbors. If the residual is above threshold, new tasks
are dynamically created and added to the task queue. Please
note that ‘vid’ refers to vertex ID, and ‘dimen’ is short for
dimension.

GIST terminate After the LBP inference, the data for each
vertex need posterior probability normalization. The frag-
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Algorithm 4: LBP DoStep

Require: Task& task, LocalScheduler& Is

1: V <« {task.vid%dimen, task.vid/dimen}
2: N < [top, bottom,left, right]
:foralli < Oto4do

update local belief b(V') based on message My[ij—v
: end for

:foralli < Oto4do

compute message My _, nii]

residual = ||My iy - My, 0l

9:  if residual > Terminate Bound then
10: Is.addTask(N[i])

11:  endif

12: end for

ment output method allows for tuples to be post-processed
and produced in parallel. This is an excellent choice for image
denoising since it needs to produce large amounts of data as
aresult and the image can be broken into fragments that have
no effect on one another.

6 Application III: Marginal inference queries over
probabilistic knowledge graphs

In this section we first provide background knowledge of
probabilistic knowledge graph and the marginal inference
algorithms in Sect. 6.1. Then we introduce the k-hop approx-
imation to further speed up the inference in Sect. 6.2. Finally
we explain the marginal inference implementation, which
involves two stages: the state building using a UDA explained
in Sect. 6.3 and parallel GIST Gibbs sampling algorithm
implementation in Sect. 6.4. Figure 6 illustrates the analytics
pipeline of the in-database query-time marginal inference

6.1 Marginal inference queries over probabilistic
knowledge graphs

Probabilistic knowledge bases (PKB), represented as Markov
logic networks [37], are evolving by extracting new knowl-
edge learned from rapidly growing amount of information
on the web. Such information extraction systems learn over
time to read the web and extract facts with confidence values.

Table UDA

memory

The marginal probabilities of nodes in the factor graphs
(the Markov network after grounding [37]) will change with
the influence of new evidence learned from the web. Figure 7
shows a knowledge base of Barack Obama citizenship con-
spiracy theories constructed from a Wikipedia page of the
events [53].

We see that in the ground predicate table, we have facts
relevant to Obama’s citizenship with prior extraction con-
fidence. To determine probability of each fact with all
correlated information, Formula 5 is used to calculate the
exact marginal probability.

To answer a real-time marginal query in such a factor
graph, we need to run inference over the cluster that the query
node resides. Existing systems [9,35] are primarily designed
for batch processing, not suited for interactive queries. Thus,
we implement our k-hop approximation system in a RDBMS
to support real-time queries. Users can issue a query to the
RDBMS and obtain the marginal probability.

In the rest of this subsection we provide background
knowledge of marginal inference over probabilistic knowl-
edge graphs through Markov logic networks [37], factor
graphs [41], and sampling algorithms such as Gibbs sam-
pling [6] and MC-SAT [36] for marginal inference.

6.1.1 Markov logic network and factor graphs

Markov logic networks (MLNSs) unify first-order logic [45]
and probabilistic graphical models [23] into a single model.
Essentially, a MLN is a set of weighted first-order formulae
(F;, W;), the weights W; indicating how likely the formula
F; is to be true. A simple example of a MLN is:

1. 0.96 born in (Ruth Gruber, New York)
2. 140 VY x € Person, VY y € City: born in(x, y) — live

in(x, y)

It states a fact that Ruth Gruber is born in New York City
and a rule that if a writer x is born in an area y, then x lives
in y. However, both statements do not definitely hold. The
weights 0.96 and 1.40 specify how strong they are; stronger
rules are less likely to be violated.

K-hop sub-network !
extraction with SQL |
——>

Fig. 6 The query-time inference analytics pipeline. First, k-hop sub-
network centered with the query node is extracted using SQL with the
user provided number of hops. then a UDA is used to load the k-hop
network factors in table and glue the factors together into a single state.

= ——————— e

LSONextTask>DoStep gy | \
A + i

I

= oo l—>1 cUDA ||
RN R 1 YDA

I 4 [
o |
o\

!
|
1
——————————— i

———— R LT e e ey PR S

Lastly, in the finalized function, the Gibbs sampling is implemented
using GIST interface. It returns the marginal probability of the query
node to the user
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factor id| clause |prob
fi 1 1.00
fa 3 1.00
f3 1A2— 3[1.00
fa 3AN4—5/0.95
fs 6 0.30
fe 6 — -3 [1.00
fr 8 0.95
fs 7AN8 — 1[1.00
fo 9 0.95
fio 9—1 1.00
(b)
gpredicate id | ground predicate

1 Obama isBornInState Hawaii

2 Hawaii isAStateOf USA

3 Obama isBornInCountry USA

4 Obama hasACitizenshipOf USA

5 Obama isFEligible ToBePresidentOf USA

6 Obama isBornInCountry Kenya

7 Star-Bulletin isLocatedAt Hawaii

8 Star-Bulletin advertise TheBirthOf

Obama
9 Obama hasBirthCertificateIn Hawaii

6.1.2 Sampling for marginal inference

Computing the exact Z in Eq. 5 is intractable due to the
large space of possible configuration. Sampling algorithms
are typically used to approximate the marginal distribution
since exact computation is difficult. Two most popular of
these approaches are Gibbs sampling [6] and MC-SAT [36],
described in the following two paragraphs.

Gibbs sampling Gibbs sampling [6] is a special case of the
Metropolis—Hastings algorithm [10]. Gibbs Sampling can
be used to approximate the marginal probabilities of each
variable, where the joint distribution is unknown or hard to
sample from, but the conditional probability of each variable
is known and easier to sample from. The Gibbs Sampling
algorithm is described in Algorithm 5:

Algorithm 5: Gibbs Sampling

(©

Fig. 7 Knowledge base of Barack Obama citizenship conspiracy the-
ories. a Factor graph, b factor table, ¢ ground predicate table

A MLN can be viewed as a template for constructing
ground factor graphs. In the ground factor graph, each node
represents a fact in the knowledge base, and each factor rep-
resents the causal relationship among the connected facts.
For instance, suppose in the rule V x € Person, V y € City:
born in(x, y) — live in(x, y), we have two nodes, one for the
head “live in(x, y)” and the other for the body “born in(x,
v)”, and a factor connecting them, the values depending on
the weight of the rule. The factors together determine a joint
probability distribution over the facts in the KB.

A factor graph is a set of factors @ = {¢1, ..., ¢n }, where
each factor ¢; is a function over a random vector X; indi-
cating the causal relationships among the random variables
in X;. These factors together determine a joint probability
distribution over the random vector X consisting of all the
random variables in the factors. Mathematically, we seek the
maximum a posteriori (MAP) configuration: it defines a prob-
ability distribution over its variables X:

1 1
P(X=X)=EH¢i(X)=26XP(Zwi”i(X)) ®)

where n; (x) is the number of true groundings of rule i in x,
w; is the rule weight, and Z is the normalization constant.
For more details about MLLNs, we refer readers to [37].
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1 z® = (20,....2))

2:fort < 1to T do

3: fori < 1tokdo

4: P(Z,'\ZY),...,ZEZ_)I, zgﬂ:ll), ...,z,(:_l))
5:  end for

6: end for

where 7 is number of iterations, and k is the number of
variables.

The Gibbs sampling algorithm begins with random
assigned initial value. Each variable is sampled from the dis-
tribution of that variable conditioned on all other variables,
using the most recent values. The marginal probability of
any variable can be approximated by averaging over all the
samples of that variable. Usually, some number of samples
(burn-in period) at the beginning are ignored, and then values
of the left samples are averaged to compute the expectation.
Gibbs sampling algorithms are implemented in the state-of-
the-arts statistical relational learning and probabilistic logic
inference software packages [22,35].

MC-SAT In real-world datasets, considerable numbers of
Markov logic rules are deterministic. Deterministic depen-
dencies break a probability distribution into disconnected
region. When deterministic rules are present, Gibbs sampling
tends to be trapped in a single region and never converges to
the correct answers. MC-SAT [36] solves the problem by
wrapping a procedure around the SampleSAT [49] uniform
sampler that enables it to sample from highly non-uniform
distributions over satisfying assignments, which is repre-
sented as Ugar(p) in Algorithm 6.

For more detailed discussion about MC-SAT, we refer to
the original publication [36].
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Algorithm 6:
num_samples)

MC-SAT(clauses, weight,

1: 20 Satisfy(hard clauses, i.e., clauses that are always true)
2: for i < 1 to num_samples do

3 M9 _

4:  for c; € clauses satisfied by x'~! do

5: With probability 1-e="* add cx to M

6: endfor

7: Sample x(’) ~ USAT(M)

8: end for
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Fig. 8 k-hop network. a The original network and b 1-hop network. ¢
2-hop network and d 3-hop network

6.2 K-hop approximation

In this subsection we formally define the k-hop network, jus-
tify the k-hop approximation and explain the implementation.
We also include a brief discussion on the extensibility of the
k-hop approximation.

6.2.1 K-hop definition

In a factor graph, a factor is in the k-hop network if all of the
literals in that factor is reachable in k hops from the query
node. The following paragraph mathematically defines a k-
hop network (Fig. 8).

Definition 1 Let the query node be a,, the number of hops
is k and the factor graph consists of N factors {C;|0 < i <
N}. The factor C; = {a;1 V aj2 V aij3 -+ V @iy} is in k-hop
network i f £ forVa;, inthe factor C; distance(ay, a;x) < k,
where the distance(ay, ;) is the minimum number of hops
between two nodes.

By specifying the k, users can directly control the size of
the k-hop network. However, in some cases, it does not suffice
to provide a k. There are cases that: (1) even with a small ,
the k-hop network might be too large. For example, in a very
a dense graph or even a complete graph, one k-hop network
would cover most of the network; (2) The k-hop network
is too small to have a good approximation, but (k 4+ 1) hop

network is too large; (3) The k-hop network for query ¢
is small, but the k-hop network for query ¢; is too large.
To make sure that the user can extract a relative big enough
portion of the k-hop network in a query time, we set up the
node_limit parameter that the k-hop network will return
either the k hop is reached or the node_limit is reached.

6.2.2 K-hop justification

The k-hop network reduction is an effective method for
reducing the search space for subsequent inference tasks.
k-hop pre-processing can be reduced to efforts of focused
belief propagation [8] and query aware MCMC [51]. Namely,
the error incurred by not sampling certain nodes is propor-
tional to the mutual information between it and the query
node. We want to focus on influence on a small portion of
the model early in the inference computation. Given a larger
time budget, we should compute the full distribution; other-
wise it is best to focus on important portions of the graph.
The mutual information between two nodes is proportional to
their active path. Therefore, as the number of hops between
nodes increases, the effective error by not sampling a node
decreases. When choosing a k we can set a threshold of the
error we tolerate.

More formally, given a query node g, the importance of a
node p is given by the following formula:

C if dist(p, q¢) = 1;
ldP) =1 crgisth it dist(p. q) > 1

p,q) > 1.
where C is some constant and N is a positive real value.
Note that as the distance increases, the importance of the
node diminishes.

We currently treat all facts as equal, but we can further
prioritize nodes by using ad hoc pairwise similarity features.
We can replace the C in the above algorithm with the pairwise
influence score.

Extensibility of K-hop approximation The intuition behind
k-hop approximation is straightforward: The farther away
the node is from the query node, the less influence it has on
the query node. Any application that involves a graph with
such property and does not require exact result can use the
k-hop approximation to avoid the cost of using the whole
graph. The k-hop implementation is orthogonal to the actual
algorithm implemented on top of the k-hop network, which
means it can be simply added as an underlying layer of the
actual algorithm implementation.

6.2.3 K-hop implementation

Specifically, the implementation includes three parts: (1) k-
hop index construction; (2) k-hop network extraction; and
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2 | [2,3 18

Fig. 9 An example factor graph

Table 1 K-hop index for the example factor graph

Factor_atom Atom_factors Edge

Fid Atom Atom Factors SRC Des
1 1 1 [1] 1 2

1 2 2 [1,2] 2 1

2 2 3 [2] 2 3

2 3 - - 3 2

(3) k-hop index maintenance. The three parts of the imple-
mentation are discussed in the following parts.

Building K-hop index To speed up the k-hop network
extraction, the k-hop index, which consists of three views
factor_atom, atom_factors and edge, is built. The
factor_atom builds the mapping from factors to atoms
in that factor by unnesting the literal array to a set of rows.
Each row stores the length of the literal array. For example,
the factor with fid = 1 in Fig. 9 results in <1, 1, 2> and
<1,2,2>.atom_factors builds the mapping from atom
to an array of factors that the atom appears in. For example,
atom 2 appears in the first and second factor, and thus [1, 2]
is in the factors column. The 1ens column stores the
length of the corresponding factor in the factors column.
The view edge contains the reachability information. If two
atoms appear in the same factor, then there are two entries
stored in the edge since the factor graph is undirected. The
k-hop index only needs to be built once as an initialization
step for all queries (Table 1).

K-hop network retrieval Based on the definition in Sec-
tion 6.2.1, to build the k-hop network, we need to find all
the nodes that are reachable in k hops from the query node.
This can be done via breadth first search (BFS) starting
from the query node with a maximum of k level. Common
Table Expressions (CTE) are used to do breadth first search
and extract the k-hop network. The corresponding facility
to CTE can be found in most of major RDBMSes such as
Teradata, DB2, Microsoft SQL Server, Oracle, PostgreSQL,
SQLite [52].

Incremental K-hop index maintenance To support the
requirement of dynamic and evolving factor graph, two oper-
ators need to be supported in the RDBMS. These operations
are Insertion and Deletion. Update operation is not dis-
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cussed since it is equivalent to one deletion operation and
one insertion operation. The k-hop index that contains the
three views atom_factors, factor_atom and edge
needs to be updated to reflect the changes to the factor graph.
To update these views, the naive approach is to regenerate the
k-hop index from scratch using the algorithms in Sect. 6.2.3.
However, typically a incremental change is small, and an
incremental maintenance strategy will be much faster than
the naive approach, just by simply updating the affected
tuples in the 3 k-hop index views. We implement SQL-
based approach for updating the 3 k-hop index views by
inserting/deleting relevant tuples in the 3 views for insert-
ing/deletion of factors and report the performance in the
experiment section.

6.3 State building with UDA

After the k-hop network is extracted, a UDA [12] is used
to load and glue all the data together to form a single state.
A UDA consists of three functions: Accumulate, Merge and
Finalize.

Accumulate One tuple contains one factor as shown Fig. 9.
The tuples are accumulated together in the Accumulate func-
tion of the UDA.

Merge The partial states in the UDA instances are merged
into one single state. Single thread database such as Post-
greSQL will skip the Merge function, and MPP databases
such as Greenplum can merge the partial states in parallel.

Finalize SQL-based Gibbs sampling is very inefficient due
to inefficient operations of random access to per-atom and
per-clause with on-disk data [35]. However, these operations
are the main operations of the Gibbs sampling. Instead, we
choose to use RDBMS UDA to implement the Gibbs Sam-
pling. The state in the Finalize function contains all the state
information. The state passed into the GIST Gibbs sampler.
The GIST Gibbs sampler does parallel Gibbs sampling and
MC-SAT until the sampling algorithms converge. Finally, the
result is written back to the database state and returned to the
user.

6.4 GIST Parallel Gibbs sampling implementation

In the Finalize function of UDA, the Gibbs sampling and
MC-SAT are implemented to do inference over the k-hop
network. It is developed under the MADIib [19] framework
and leverages the C++ abstraction layer that encapsulates
DBMS-specifc logic.

In Algorithm 7, we show the Gibbs sampling for marginal
inference. The implementation replicates the implementation
in Alchemy [22], which includes a sequential in-memory
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Algorithm 7: Sequential Gibbs Sampling

1: while done = false do

2:  for i < 0 to numChains do

3 performGibbsStep(i)

4:  end for

S:  if burnIn then

6: burnln < checkConvergeAll(burnConvergeTests)
7 .

8

9

else
done <« checkConvergeAtLeast(convergeTests)
end if
10: end while

implementation of Gibbs Sampling. In the implementation,
we set the number of independent chains to 10 in line 2.
It uses the burn-in criterion in Alchemy that throws out the
samples at the beginning and continue sampling until 95% of
the atoms converges according to the convergence criterion
[22]. Lines 2—4 perform Gibbs sampling on 10 independent
chains. Lines 5-10 detect the convergence of the burnln of
the Gibbs sampling.

The Algorithm 7 can be easily paralleled where multiple
threads are launched and each thread runs one Gibbs chain.
After each iteration, the results are combined together to eval-
uate the convergence of the Gibbs sampling.

Task One task in the GIST Gibbs involves sampling one
Gibbs chain from the first node to the last node. The new val-
ues will be accumulated by the corresponding convergence
UDA.

Scheduler The global scheduler partitions the workloads and
passes them to local schedulers (LS) evenly by assigning
equal number of Gibbs Sampling chains to each LS. Each
LS does the work independently.

Convergence UDA The convergence criterion can be that the
maximum number of iterations is reached or the number of
converged atoms is above the termination threshold.

However, Gibbs sampling will not converge into the
correct values with the presence of deterministic or near-
deterministic rules, which are prevalent in real-world applica-
tions. Thus we implement MC-SAT [36], the state-of-the-art
sampling algorithm for factor graph that can be invoked in
the finalize function similar to the Gibbs Sampling imple-
mentation.

7 Experiments

The main goal of the experimental evaluation is to mea-
sure the performance of the UDA-GIST framework for the
three problems exemplified in this paper: cross-document
coreference (CDC), image denoising and query-time mar-

ginal inference. As we will see, when compared with the
state-of-the-art, the GIST-based solutions scale to problems
27 times larger for CDC and are up to 43 times faster for
image denoising. For query-time marginal inference, the k-
hop approximation provides a trade-off between query time
and accuracy. It returns high-quality result for marginal prob-
ability queries in a reasonable amount of time. Also our
parallel Gibbs sampling achieves one order of magnitude
speedup. We also include evaluation with MC-SAT and k-
hop approximation to support deterministic rules efficiently.

7.1 Experimental setup
7.1.1 Cross-document coreference and image denoising

In order to evaluate the C++ GIST implementation of CDC
and image denoising, we conduct experiments on various
datasets in a multi-core machine with 4 AMD Opteron 6168
running at 1.9GHz processors, 48-core, 256GB of RAM and
76 hard drives connected through 3 RAID controllers. The
UDA-GIST framework is implemented in DataPath [1], an
open source column-oriented DBMS. The implementation
makes use of the GLA, the UDA facility in GLADE [39].
For the image denoising application, we compare the perfor-
mance with GraphLab. Although we are not able to replicate
the same experiment for the CDC in [44] since its source code
is not published and the running time is not reported, which
makes the direct comparison impossible, we show that we
are able to tackle a 27 times larger problem than the problem
solved in [44]. To the best of our knowledge, GraphLab and
Google CDC are written in C++.

7.1.2 Marginal inference queries over probabilistic
knowledge graphs

In order to evaluate runtime and accuracy of the in-RDBMS
inference with the k-hop approximation, we conduct exper-
iments on a PostgreSQL DB over a 32-core machine with
2T hard drive and 64 GB memory. We use the REVERB-
SHERLOCK dataset and NELL- SPORT dataset as discussed in
Sect. 7.4.1. We evaluate the accuracy the of k-hop approach
against with the ground truth on the entire factor graph.

7.2 Cross-document coreference with
Metropolis—Hastings

7.2.1 Cross-document coreference datasets

The performance and scalability of GIST implementation of
cross-document coreference (CDC) is evaluated using the
Wikilinks [43] dataset. The Wikilinks dataset contains about
40 millions mentions over 3 millions entities. The surround-
ing context of mentions is extracted and used as context
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features in the CDC techniques. In this dataset, each men-
tion has at most 25 left tokens and at most 25 right tokens.
The dataset is generated and labeled from the hyperlinks to
the Wikipedia page. The anchor texts are mentions, and the
corresponding Wikipedia hyperlinks are entities. Any anchor
texts which link to the same Wikipedia page refer to the same
entity. For our experiments, we extract two datasets Wikilink
1.5 (first 1.5M mentions from the 40 M dataset) and Wik-
ilink 40 (all 40 M mentions in the dataset) from this Wikilink
dataset.

The state-of-the-art [44] evaluates CDC performance
using a different Wikilink dataset containing 1.5 million men-
tions. The exact dataset used and the running time in that
paper are not published, and thus a direct comparison is not
possible. Nevertheless, our version of the Wikilink 1.5 has
the same number of mentions and about the same number of
entities.

Notably, with the exception of [44], no prior work pro-
vided experiments with datasets larger than 60,000 mentions
and 4000 entities (see [43] for a discussion). The Wikilink 40
dataset is 27 times larger than the largest experiment reported
in the literature.

7.2.2 Experiment result

Methods The performance of GIST coreference is evaluated
against the state-of-the-art [44] using a similar dataset, fea-
ture set, model and inference method.

— Datasets: Wikilink 1.5 and Wikilink 40
— Feature set: the same feature set as in [44] are used where
the similarity of two mentions m and n is defined as:

Y (m,n) = (cos(m, n) + wISET_EQ(m, n))

Where cos(m, n) is the cosine distance of the context
between mention m and mention n. TSET_EQ(m, n) is
1 if mentions m and n have the same bag of words disre-
garding the word order in the mention string, otherwise it
returns 0. w is the weight of this feature. In our experiment,
we set w = 0.8.

To evaluate the accuracy of CDC results, we use preci-
sion and recall, as well as F] score, the harmonic mean of
precision and recall.

Wikilink 1.5 experimental results The performance evalu-
ation results over Wikilink 1.5 are depicted in Fig. 10a.
The experiment runs for 20 iterations. Each iteration takes
approximately 1 min. During initialization (iteration 0), each
entity is assigned to exactly one mention. The state is built
using a UDA in about 10s. The inference starts at iteration 1
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Fig. 10 GIST MCMC evaluation over Wikilink 1.5 and Wikilink 40

after the state is constructed. At iteration 7, the state essen-
tially converges and has precision 0.898, recall 0.919 and Fj
0.907. The F; continues to slightly improve up to iteration
20. In the last iteration 20, the measures are precision 0.896,
recall 0.929 and F 0.912. [44] employs 100-500 machines
to inference over a similar dataset.

Wikilink 40 experimental results To evaluate the scalability
of our coreference implementation, we use the Wikilink 40
that is 27 times larger than the current state-of-the-art. As
the same as the above experiment, each entity is assigned
with exactly one mention during initialization. The state
building takes approximately 10 min. Figure 10b depicts the
performance of our implementation with this dataset on the
experimental machine. We run 20 iterations each with 10'!
pairwise mention comparisons—each LocalScheduler
is generating random tasks until the comparisons quota is
met. Each iteration takes approximately 1 h, and we can see
that the graph converges at iteration 10 with precision 0.79,
recall 0.83 and F; 0.81. This essentially means that, using
our solution, within a manageable 10 h computation in a sin-
gle system the coreference analysis can be performed on the
entire Wikilink dataset (Fig. 10).
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Discussion A direct comparison to the state-of-the-art [44]
is not possible since the dataset used is not published and
the time plot in its performance graph is relative time. We
believe our results are substantial since our final inference
measure is similar as reported in the paper and our exper-
iment evaluation finishes in 10 min on a single multi-core
machine instead of 100-500 machines for a similar dataset
Wikilink 1.5. We are also able to finish the inference in 10
h for a 27 times larger dataset Wikilink 40. The speedup
can be seen as follows: [44] uses MapReduce to distribute
the entities among machines. After sampling the subgraphs,
the subgraphs need to be shuffled and even reconstructed
between machines, which suffers I/O bottleneck. However,
we use one single machine with enough memory to store the
whole graph and maintain an in-memory super entity struc-
ture to speed up the MCMC sampling.

7.3 Image denoising with loopy belief propagation
7.3.1 Image denoising datasets

We evaluate the performance with synthetic data generated
by a synthetic dataset generator provided by GraphLab [27].
The generator produces a noisy image Fig. 12b and the corre-
sponding original image Fig. 12a. Loopy belief propagation
is applied to reconstruct the image, and it produces a pre-
dicted image. We use the dataset generator to generate 10

Number of vertices in millions

image datasets varying from 4 millions pixels (2000 x 2000)
to 625 million pixels (25,000 x 25,000).

7.3.2 Experiment result

We evaluate the performance of the three approaches:
GraphLab LBP, GIST matrix-based LBP and GIST graph-
based LBP against the 10 image datasets. The analytical
pipeline consists of three stages: state building, inference
and result extraction. Figure 11 provides a detailed perfor-
mance comparison of the three methods for each of the three
stages. Due to the more compact representation (no explicit
representation of edges), only the matrix-based GIST imple-
mentation can build the state with 400 millions and 625
millions vertices image dataset. We are able to perform exper-
iments on images with 4-256 million pixels for all three
methods.

Overall performance comparison To sum up all the per-
formance metrics of the three stages, Fig. 1la describes
the overall performance speedup w.r.t. the worst. Clearly,
GraphLab performs the worst and its performance speedup
against itself is always 1. As shown in the experiment results,
graph-based GIST can achieve up to 15 times speedup
compared with GraphLab. With a matrix-based abstraction,
GIST can achieve up to 43 times speedup compared with
GraphLab.
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State building In the state building phase, as we can see from
Fig. 11b, the graph-based GIST outperforms the GraphLab
by up to 16 times speedup with a UDA to construct the graph
state in parallel. It is mainly due to the parallel I/O in the
DBMS where each UDA instance loads one chunk of the
vertex and edge data into memory and the final graph is
merged together in the merge function of UDA. GraphLab
sequentially constructs the graph state without parallelism
as suggested in Fig. 13a, where only one CPU core is used.
Matrix-based GIST further improves the state building using
a matrix instead of a general graph as the underlying state.
The time to build the graph state using a matrix-based GIST
is three orders of magnitude faster than the GraphLab. In
the matrix-based GIST, a matrix is pre-allocated and UDA
instances can pull the data from the disk and fill the matrix
independently with massive parallelism.

LBP inference With the identical algorithm implemented in
Graph-Lab, GIST LBP produces the same quality image as
GraphLab as shown in Fig. 12. The number of vertices sam-
pled in each of the settings is in range [1.45 billion, 1.48
billion].

GraphLab with sync. engine, with async. engine, sweep
scheduler and with asyn. engine, fifo_queue scheduler takes
about 30, 26, 24m to converge, respectively. Graph-based
GIST LBP only takes 4.3m with the lock-free scheduler
as discussed in Sect. 5.3. Matrix-based GIST LBP further
improves the running time to 3.2m. The 27% performance
difference between graph-based and matrix-based GIST is
due to the better memory access pattern of the matrix.
GraphLab’s CPU utilization with sync. engine fluctuates
between 6.0 and 45.5 out of 48, where GIST can almost
fully utilizes the 48 cores. GraphLab enforces load balanc-
ing using the two-choices algorithm in [32] through locking
two random task queues. The load balance is not an issue as
indicated by the steep decline curve at the end of inference,
but the cost of locking is significant since the tasks are very
lightweight (involving 4 neighbors). Considering data race
is rare in a graph with hundreds of millions of nodes for 48
threads, GIST LBP further relaxes sequential consistency to
allow high degree of parallelism. Matrix-based GIST LBP
with best effort parallel execution (relaxing sequential con-
sistency) converges to the correct point, shown in Fig. 12,
and improves the running time to 2.5 m.

GIST terminate After the inference, the posterior probabil-
ity values in vertices of the graph need to be normalized, and
then results need to be extracted. GraphLab does not support
post-processing and results extraction in parallel since it only
has an abstraction for inference. After the parallel inference,
GraphLab post-processes each vertex sequentially as shown
in the timeline [122, 160] minute of Fig. 13a. The GIST Ter-
minate facility allows for multiple tuples to be post-processed
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Fig. 12 Image denoising with LBP. a The original image and b is
the corrupted image. ¢ The predicted image by GraphLab and d is the
predicted image by GIST

(b)
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Fig. 13 GraphLab LBP (sync. engine) and GIST matrix-based LBP
(best effort) CPU utilization evaluation with the image with 256 millions
pixels in a single machine with 48 cores

and produced in parallel as depicted in the timeline [3.78,
3.92] minute of Fig. 13b, and thus it achieves more than two-
orders-of-magnitude speedup over GraphLab.

7.4 Marginal inference queries with K-hop
approximation over probabilistic knowledge graphs

7.4.1 Query-time marginal inference queries dataset

In our experiment, we evaluate our approach over two real-
world datasets: REVERB knowledge base [15] using the
SHERLOCK inference rules in [40] and NELL candidate belief
dataset [31] using inference rules in [24]. These rules are
uncertain, forming a Markov logic network (MLN) [37]. The
MLN inference involves two steps:

1) Generating a ground factor graph, described in [9];
2) K-hop inference over the ground factor graph.

REVERB-SHERLOCK The original REVERB-SHERLOCK KB
contains 407,247 facts and 30,912 inference rules. We run the
grounding algorithm described in [9] and generate a factor
graph with 54,103 nodes and half a million factors. Notably,
we normalize the weight in the dataset to double value in
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Table 2 Factor graph cluster size distribution

Table 3 Incremental k-hop index maintenance cost

Cluster size #Clusters Percent Percent Delete(s) Insert (s)
(a) REVERB-SHERLOCK (a) REVERB-SHERLOCK
453,384 1 90.7 0.01 14 0.65
[1056, 3649] 4 1.4 0.1 10 2.45
[1,711] 3578 7.9% 1 22.5 5.9
(b) NELL- SPORT 2 239 6.9
714,760 1 19.5 4 272 9.1
[10335, 141811] 65 46.9 6 28.9 11.3
[3,9988] 1518 33.6 8 31.3 12.8
10 36.1 16.5
(b) NELL- SPORT
[0,1] since large weight would make the Gibbs sampling hard 0.01 15.2 6.9
to converge in a finite amount of time as discussed in [36]. 0.1 517 30.2
However our focus is on evaluating the effectiveness of k-hop 1 83.1 45.4
approach instead of the underlying inference algorithms and 2 86.5 52.8
the k-hop approach is orthogonal with the effort to improv- 4 98.4 66.1
ing the inference algorithm. Our experiment performs k-hop 6 109.7 78.9
inference over this factor graph and aims at determining cred- 8 1153 90.8
ibilities of the queried facts based on the input KB and rules. 10 119.2 100.8

Table 2 shows the component size distribution in the factor
graph. It shows 90% of the clauses are in the biggest cluster.
We categorize this cluster as large cluster. Similarly, we cat-
egorize the cluster with 3649 clauses as the medium cluster
and the cluster with 711 clauses as the small cluster.

NELL- SPORT The original NELL candidate belief dataset
contains 84.6 million facts and 1828 rules in the sport domain.
Some rules with same rule type but have different weights.
We remove the duplicate rules and only keep one single
unique rule with the averaged weight of duplicate rules. All
the rules that contains “generalize” predicate are removed
since they do not relate in the sports domain. We run the
grounding algorithm [9] which takes around 25 min. Finally,
we get a factor graph with 23,3756 facts and 3,670,822 fac-
tors.

7.4.2 Experiment result

This part shows performance of marginal inference queries
with k-hop approximation in PostgreSQL in terms of runtime
and accuracy.

K-hop index maintenance evaluation As described in
Sect. 6.2.3, the k-hop index needs to be built before any k-hop
query can be issued. It takes about 35.1 s to build the k-hop
index for the REVERB- SHERLOCK KB and 132.6 s for the
NELL- SporT KB. With incremental changes to the factor
graphs, the indexes need to be maintained properly to reflect
the changes in the factor graphs. Table 3 describes the k-hop
index maintenance cost of insertion and deletion with various
incremental changes from 0.001 to 10%.

To evaluate the incremental maintenance cost after dele-
tion, we randomly delete factors from 0.001 to 10% of the
original factor graph. As depicted in Table 3, it takes only
1.4 and 15.2s to maintain the indexes for the REVERB-
SHERLOCK and the NELL- SPORT after deleting 0.01% of the
original factor graphs. The maintenance cost increases as the
deletion increases. With the 10% deletion in the REVERB-
SHERLOCK, it takes 36.1s to maintenance the index view.
It suggests the naive approach of regenerating these views
would be faster if more than 10% factors need to be deleted.
However in NELL- SPORT, it takes 119.2s to maintain the
index with 10% deletion which is marginally better than the
naive approach that requires 132.65s.

For incremental maintenance cost after insertion, we ran-
domly select 90% of the original factor graphs as the base
factor graphs for the two datasets and take the un-selected
factors as the insertion. The result is similar to incremental
deletion, but even faster.

In sum, a typical update to the KB is usually small, even
less than 0.01%. Our results show that it achieves an order
of magnitude speedup than the naive approach for 0.01%
deletion and 0.01% insertion. It is still marginally better or
almost equivalent than the naive approach with 10% update
in the two factor graphs.

K-hop parameters setup As discussed in Sect. 6.2.1, the
two parameters num_hop and node_1imit control the k-
hop network size, thus affecting the approximation accuracy
and runtime. We evaluate the effect of the first parame-
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Fig. 14 REVERB- SHERLOCK k-hop evaluation with Gibbs Sampling.
a Network size, b error, ¢ runtime with sequential execution, d runtime
with parallel execution

ter by varying num_hop from 1 to 15 and the effect of
the second parameter by setting node_1limit with three
different values: 1000, 2000 and 3000. We compare the per-
formance of parallel Gibbs sampling and sequential Gibbs
sampling. Moreover, since the size of the cluster where the
query node resides has a direct effect on the performance
of inference using k-hop approximation, we categorize the
clusters into three types: large, medium and small, as dis-
cussed in Sect. 7.4.1 and we select one cluster from each of
the three types with the largest size in that type of cluster. It is
impractical to evaluate all the nodes in the factor graph clus-
ter since it can be time-consuming and unnecessary. Thus we
randomly sample 50 nodes from three clusters and use the
average results instead.

Evaluation over REVERB- SHERLOCK. Figure 14 shows the
evaluation results on REVERB- SHERLOCK with Gibbs Sam-
pling in terms of k-hop network size, error, runtime with
different settings of num_hop and node_limit. The

@ Springer

graphs in left, middle and right in Fig. 14 describe the aver-
age results of the 50 nodes from the large, medium and the
small clusters, respectively. Figure 14a describes the k-hop
network sizes with different settings of parameters. In the
large cluster, we see that the larger the limit, the larger the
retrieved k-hop network. Also the network size increases with
the increase of the number of hops until num_hop reaches
5. Thus it suggests the node_1limit is reached before the
num_hop is reached. In the medium cluster, the difference
of node_1limit values is not as significant as in the large
cluster. In the small cluster, there is almost no difference as
we see that the lines of the various node_1limits almost
overlap, indicating that num_hop is reached first before
node_limit is reached. After 5 hops, it returns the whole
factor graph for a small factor graph. Figure 14b shows the
error. As shown in Fig. 14b, the error reduces from 0.145 to
0.11 with node_1imit = 1000 as we increase hop from 1
to 5. Withnode_1imit =3000, the error is further reduced
to 0.06. For medium and small clusters, the error is reduced
from hop 1 to hop 2. With larger hops, the error becomes
negligible. Figure 14c shows the performance of sequential
execution and parallel execution. Itis consistent with Fig. 14a
since the neighbor network size decides the runtime. The
parallel implementation achieves one order of magnitude
speedup compared to the sequential implementation. With
smaller networks, the improvement is not significant since
the k-hop network extraction would be a dominant factor of
the overall runtime.

Evaluation over NELL- SPORT Figure 15 shows the evalua-
tion on NELL- SPORT with MC-SAT, since Gibbs sampling
will not converge to the correct values when deterministic
and near-deterministic rules are present in the NELL-Sport
dataset. Due to the single-chain nature of the MC-SAT algo-
rithm, it cannot be implemented with GIST parallel interface
efficiently, and thus we only provide the sequential runtime
to demonstrate the k-hop effectiveness of runtime/accuracy
trade-off. The results are similar to REVERB- SHERLOCK,
except that the three lines with different node_1imi t coin-
cide, due to more evenly distributed nodes in different sizes
of clusters than REVERB- SHERLOCK.

8 Related work

Several significant attempts have been made toward effi-
cient computation frameworks for SML in DBMSes such as
MADIib [11,18] and in other parallel and distributed frame-
works such as MapReduce [13,29], GraphLab [27,28] and
GraphX [54].

MADIib [11,18] integrates data-parallel SML algorithms
into DBMSes. By allowing a Python driver for iterations
and a UDA to parallelize the computation within each itera-
tion, algorithms like logistic regression, CRF and K-means
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Fig. 15 NELL- SPORT k-hop evaluation with MC-SAT. a Network
size, b error, ¢ runtime with sequential execution

algorithms are implemented efficiently [25]. However, the
data-driven operator, UDA, cannot efficiently express state-
parallel algorithms.

Tuffy [35] attempts an in-database implementation of
WalkSAT algorithm over Markov Logic Networks (MLN),
but it is too slow for practical use. Tuffy results in a hybrid
architecture where grounding is performed in DBMS and
WalkSAT is performed outside of the DBMS. The grounding
step over MLN joins the first-order model with data to con-
struct the model, which is the state space consisting of nodes
and edges. The sampling step over the MLN is performed
outside of a DBMS due to the inefficiency of state-parallel
algorithm using the data-driven execution model. Similar to
UDAs, MapReduce excels at expressing data-parallel algo-
rithms, but it cannot efficiently support state-parallel SML
algorithms.

To address the limitations of data-parallel operators to
express graph-parallel SML algorithms, GraphLab proposes
a computation framework with a graph-based abstraction for
graph-parallel algorithms. GraphLab simplifies the design
and implementation of SML algorithms , but it cannot
express SML algorithms whose underlying states are com-
plete graphs, dynamic graphs or more general data structures.
As a result, the CDC using the Metropolis—Hastings algo-
rithm where the underlying state is a complete graph cannot
be implemented efficiently. Secondly, GraphLab misses the

opportunity to exploit the structure of specific problems. For
example, the state in the image denoising application can be
represented as matrix, a specialized graph. A matrix state
brings the opportunity to build the state in parallel with a
UDA. It also speeds up the inference due to the better access
pattern of matrix. Compared to GraphLab, the UDA-GIST
framework further speeds up the performance using lock-free
schedulers and best effort parallel execution, which relaxes
sequential consistency to allow higher degree of parallelism
[7,30]. Moreover, GraphLab is not integrated with a scal-
able data processing systems for parallel state construction
and parallel result extraction. It is difficult for GraphLab to
connect to a DBMS to support a query-driven interface over
the data and result due to the impedance mismatch of non-
relational world and relational engine.

Pre-processing and post-processing in a graph analyti-
cal pipeline are time-consuming, which even exceeds the
inference time. Motivated by that, GraphX, built on Spark
[55], inherits the built-in data-parallel operator to speed up
the pre-processing and post-processing. It produces triplets
table to represent a graph by joining vertex relation and
edge relation. In essence, GraphX is in the same spirit as
MapReduce since it is based on a synchronous engine and
has data duplication to represent a graph which is different
from the graph representation in GraphLab. For inference,
GraphXis less efficient than the GraphLab, but it outperforms
GraphLab from a end-to-end benchmark, which consists of
pre-processing, inference and post-processing [54].

Researchers have created systems for large-scale knowl-
edge base construction and inference including Alchemy
[22], Tuffy [35], NELL [5] and ProbKB [9]. Alchemy
provides a series of algorithms for in-memory statistical rela-
tional learning and probabilistic logic inference for Markov
logic network. Tuffy improves the grounding phase of infer-
ence using RDBMS. However, there is no parallelization in
both Alchemy and Tuffy for inference in a MLN network.
ProbKB achieves significant speedup in the first phase of
grounding using MPP Databases Greenplum.

To support query-time inference queries over probabilistic
graphical models, Siimer et al. [46] present adaptive infer-
ence in graphical models by taking advantage of previously
computed quantities to perform inference more rapidly than
from scratch. However, this approach can only be used in
exact inference and small factor graphs. Jiang et al. [21]
present a similar idea to our approach but limit the neigh-
bor network to 2 hops. Also the definition of the 2 hops is
not formally defined.

There are also other works aiming on scalable inference
using graphical models. Niepert et al. [34] use Tractable
Markov Logic (TML), a subset of Markov Logic to achieve
tractable inference, while limiting the expressiveness only
comparable to probabilistic Horn KBs. Wick et al. [50] use
MCMC and factor graph for scalable query over probabilistic
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database, which does not support for query-time response.
Beedkar et al. [4] achieve parallel inference via partition-
ing the Markov logic network and importance sampling;
however, the method is much more complicated than our
GIST implementation while achieving modest speedup. Shin
et al. [42] focus on statistical inference on the updated factor
graph with incremental changes, while our work focuses on
approximate inference in real time. However, those works
aforementioned do not support query-time inference.

9 Conclusion

In this paper we introduce the GIST operator to implement
state-parallel SML algorithms. We present the UDA-GIST,
an in-database framework, to unify data-parallel and state-
parallel analytics in a single system with a systematic
integration of GIST into a DBMS. It bridges the gap between
the relation and state worlds and supports applications that
require both data-parallel and state-parallel computations.
We exemplify the use of GIST abstraction through three
high-impact machine learning algorithms and show thorough
experimental evaluation that the DBMS UDA-GIST can out-
perform the state-of-the-art by orders of magnitude. We also
show that in general with UDA-GIST, we can unify batch
and query-time inference efficiently in database.
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