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Abstract—Data produced from text is one of the most impor-
tant new resources for doing research in quantitative political
science research. “Event data,” which codes structured actor-
event-target triples from text, is a particularly useful form of
data. Most publicly available event datasets, though, are limited
to English only, limiting their usefulness for studying many
regions. We demonstrate new techniques for coding events in
English, as well as in Arabic, a previously uncoded language. In
order to generate language-specific political event data, “actor”
and “verb” dictionaries are required for each specific language.
Efficiently developing an accurate and extensive dictionaries is
a difficult challenge. In this paper, we describe four different
approaches we have used to solve the problem of producing
dictionaries and how other researchers can use our ideas to
develop dictionaries in a new language or new ontology. This
work stems from an ongoing NSF RIDIR project, “Modernizing
Political Event Data” which aims to produce multilingual event
data and the software needed for researchers to produce custom
datasets.

I. INTRODUCTION

Data produced from news stories is one of the most im-
portant new sources of information for quantitative political
science research. Drawn from English language news reporting
around the world, machine coded data of geo-referenced polit-
ical and social activity has opened up new possibilities for the
study of numerous political phenomena ranging from social
movements to violent conflict and unrest and government
responses. Data is automatically coded from text by comparing
phrases in the text to hand coded dictionaries to identify
actors and events. However, one limitation of event data is
its restriction to English language sources only. We aim to
build a new machine-coded event data set of Arabic news
corpus and detect events such as ‘protest’ or ‘attack’ from
the news corpus using the event coder UniversalPetrarch1.
While UniversalPetrach’s code only requires minor changes
to accommodate new languages, the dictionaries used to map
phrases to codes need to be completely re-written for each
new language. Each dictionary encodes several specific cases
used to translate sentences to events. Several issues make
automated event coding in multiple languages a difficult and
an as yet unsolved task, including the unwieldy size of text

1UniversalPetrarch is a language-agnostic political event coding system
https://github.com/openeventdata/UniversalPetrarch/

data which can reach terabytes, extracting the relevant actors
to the events being studied, and guaranteeing both the accuracy
and abundance of the coded results.

This paper describes our process of tackling these issues
and building a computer-assisted coding system for Arabic
dictionary development. While the dictionaries we produce are
Arabic-specific, the tools we develop will work for researchers
making dictionaries in any language.

Fig. 1. Regular coding interface, Extracted Noun and Verb sentences are on
the left, clicking populates the actor on the right.

II. BACKGROUND: CREATING POLITICAL EVENT DATA

In the past 15 years, automated methods of text analysis
have become prominent in political science research, allowing
researchers to study much larger amounts of text data, in order
to find meaning that is difficult to extract manually. Event data
in political science consists of a “triple” of basic information:
an event such as an attack or protest, performed by a source
actor, against a target. These events, actors, and targets are
automatically recognized in text, extracted, and resolved to a
defined set of ontology codes, such that “demonstrated” and
“rallied in the streets” would both be coded as a PROTEST
event and “Angela Merkel” and “German Ministry of Defense”
would both be represented as DEU GOV in the ontology we use
[1]. Performing this process on many millions of documents
produces a set of structured data that is much easier to analyze
than the raw documents [2], [3].

https://github.com/openeventdata/UniversalPetrarch/


The full process of producing events from text consists of
three steps. First, the text is put through a natural language
processing step which annotates the sentences with grammat-
ical information about nouns and verbs. For our work, we
use CoreNLP pipeline [4] to achieve this [2]. The second
step is to find potential events in the text. Based on the
grammatical structure we produced in step 1, we feed our
data into UniversalPetrarch, which looks for combinations of
noun and verb phrases that are likely to be actors, targets
and actions in an event. A limitation in this process is that
UniversalPetrarch does not consider the content of the data at
this point but only the grammatical structure of the sentence,
which can cause it to extract events that are not interesting
or relevant, such as sports stories or marriage announcements.
This will be addressed when we filter our data and only deliver
useful events to our coders.

The third step is also performed by UniversalPetrarch and
consists of comparing the extracted actor and action text to a
defined set of phrases and the codes that should be assigned to
them. The last step is crucial for the event data analysis, since
even after events have been recognized and extracted from text,
the sheer variety of terms and languages to refer to people,
organizations, and events means that raw text phrases are
impossible to analyze quantitatively on their own. Resolving
them to common codes makes further analysis feasible. For
example, if the previous step recognizes “marched and chanted
slogans” as an action in the fragment of text, this step would
resolve it to a consistent, defined event type, such as PROTEST.
Similarly, the extracted actor text “Angela Merkel” could be
resolved to DEU GOV in the CAMEO ontology we use.

III. RELATED WORK

Philip Schrodt and colleagues at the University of Kansas
created the original English language event coding dictio-
naries. To develop the dictionaries, TABARI 2, the coding
program that Schrodt used displayed sentences to coders if
the system recognized an event in a sentence but the actor
was not in the dictionary. Coders were then responsible for
adding these new phrases to the dictionaries.

Our process improves TABARI’s approach in several ways.
First, it is a web-based system, allowing many coders to work
together without interfering with each others’ work. Second,
we provide useful structure to the task by suggesting the
CAMEO [5] ontology in a dropdown list instead of asking
coders to either memorize or refer to the codebook for the list
of possible codes. We used other technologies to facilitate our
process, for example, using word2vec [6] to suggest synonyms
of relevant actors to be added to the dictionary. We also
developed a validation system based on peer review allowing
coders to flag the dictionary entries about which they are not
confident. All of these tools improve our speed and accuracy
in generating dictionaries.

Javier Osorio and colleagues worked on dictionary devel-
opment for Spanish [7], but because their text was drawn

2http://eventdata.parusanalytics.com/software.dir/tabari.html/

from politically relevant sources, they did not need to develop
mechanics to filter out less useful text from a large text corpus
as we needed to do. Because we used a large corpus of data,
a challenge for our coders was the number of stories they
received that had no relevance for coding political events. In
order to address this problem, we developed a way to filter out
stories of no clear relevance, delivering stories to coders most
likely to contain political events. Another aspect of coding we
took into consideration in Arabic dictionary development is
an actor’s role during different time periods since each actor
might serve different roles at different times. That information
is important when detecting new political events and we built
systems to facilitate the process of recording that piece of
information. An additional innovation we developed was to
automatically find Arabic transliterations for existing actors in
the English dictionary using Wikipedia. Our “wiki-bio” coding
approach pre-populates all the possible roles an actor might
occupy in different time ranges with a Wikipedia link attached
and is much more convenient for coders to use.

Martin Atkinson et al. worked on extracting security-related
events corpus from a multi-lingual corpus but did not build a
system for a specific language like our system does for Ara-
bic [8]. The way the authors cluster events is SVM-based [9],
while we use a dictionary-based system, UniversalPetrarch,
that uses dictionary entries to map phrases to a specific
CAMEO code. This dictionary-based system should be able
to capture more specific events of relevance than machine-
learning systems and achieve higher accuracy, but it requires
a lot of work to build a language-specific dictionary. Rapid
development of dictionaries is therefore needed in order to
make dictionary-based event coding feasible for new languages
and domains.

IV. CODING INTERFACES

Arabic-language actor dictionary development is crucial for
the event detection step (3rd step) performed by UniversalPe-
trarch. We used different techniques, ranging from manual
to fully automatic, to help our team of human annotators
(described in the next section) create the Arabic-language actor
dictionaries. In this section, we outline each approach, discuss
its advantages and limitations, and describe the interface we
built for each technique. Finally we make recommendations
to other researchers creating non-English language actor dic-
tionaries or researchers developing dictionaries using new
ontologies.

The first approach we developed was to sample the data
from our Arabic Gigaword text corpus and use CoreNLP (
[4]) to parse the data into a grammatical format with nouns
and verbs and feed the parsed result to UniversalPetrach [2].
The next step was for our coders to code an entry for each
extracted actor produced by UniversalPetrarch. To do so, we
developed our main coding interface, Interface 1 (Figure 1),
where we used several new techniques for this step in order
to enhance accuracy and coding speed.

First, we exposed a search option for the coders with a
“text” index on our data in MongoDB, so that coders can

http://eventdata.parusanalytics.com/software.dir/tabari.html/


work on related topics by querying similar keywords. It also
allowed them to focus on coding similar topics, speeding up
the process. Second, when an actor entry is already coded,
and the same word appears in the current sentence, its coded
record from the database will pop up on the interface. Other
coders can then confirm the previous coder’s work, rather
than entering a new entry. This set-up ensures that the most
common entries are reviewed most frequently. Third, the
interface will also suggest alternative spellings of the names
with its “synonym” based on word2vec. This greatly increases
the yield of the system, since many versions of the same name
can be added once to the dictionary. Finally, the interface also
includes an “unsure” button which flags the entry for peer
review or review by the supervisor of the coding process. More
on this is in the experiments section.

The advantage of this interfaces and the techniques it
employs is that it allows for broad coverage of the text by
pulling out all the possible actors in the text and ensures that
the dictionaries will have entries for them. The disadvantage is
clear: we are randomly sampling sentences out of a corpus of
millions of sentences, with the result that the coders might
code actors who are not, in fact, high priority for adding.
In order to solve this problem, we applied a topic modeling
strategy, latent dirichlet allocation [10] to our sentences so
we can choose the “politically relevant” topics to code. We
clustered the sentences into different number of topics (N ∈
{5, 10, 20, 40}), We sampled sentences from each cluster to
show different native Arabic speaking coders and asked them
to summarize which topic each clustering is mainly about.
We then used their assessment to conclude that clustering the
corpus into 20 groups gives us the best results. Finally, we
filtered out unrelated topics like sports from the corpus, only
showing the sentences that come from more “political related”
topics. Using this technique and the interface built for it, the
coders added 6,387 actor entries and 1,628 verb entries.

The second approach we used in actor coding was to directly
translate the existing English actor dictionary to Arabic using
Wikipedia. Because each record is costly to add, being able to
translate existing English dictionary entries into Arabic would
greatly increase our efficiency. For each actor in the English
dictionaries, we attempted to find its Wikipedia page by an
exact name match. Once we located an English article, we then
checked to see if a corresponding Arabic article existed. If it
did, we took the Arabic name for this actor and the existing
role information in the English language dictionary and added
them to the Arabic dictionaries. The major advantage of this
approach is its efficiency and speed, as no human effort is
needed. The limitation of this approach is that we can only
add actors that are already in the existing English dictionaries.
Additionally, entries may not include each role of the relevant
actors in Arabic language news sources. With this approach,
we were able to achieve 5,696 actor entries. We did not
develop a special interface.

The third approach we used in actor coding was to au-
tomatically find high-frequency actors in the corpus and to
have coders create entries for them. We first use LDA to filter

out unrelated topics, and then pass the remaining documents
through CoreNLP to parse the sentences into noun- and
verb phrases. We then used a MapReduce [11] strategy to
count the frequency of each actor in the corpus and rank
the count in decreasing order. Next, we filter out all nouns
that are not named entities using a multilingual named entity
extraction (NER) model [12]. We then supply the actors to the
coders ranked by decreasing order of appearance. Along with
the actor or organization showing on the interface, we also
presented five sentences in the corpus where the noun appears
as background content to our coders, so the coders could have
more content-related information when they made a coding
decision. A screen shot of the interface is shown in Figure 2.

Fig. 2. Fast coding interface, Frequency and NER based, 5 sentences
containing the keyword is showed on the bottom

The advantage of this method is that it recommends the
most important actors (measured by frequency) in the corpus
and directs the coders to work on them. Unfortunately, sev-
eral off-the-shelf programs exhibited poor performance when
performing Arabic NER. The NER model trained in spaCy
with poor data, so its performance is inadequate in recognizing
person and organization names. It also cannot distinguish
between politically relevant and irrelevant people. Out of
the most frequent 7,180 people or organizations recognized
by the spaCy multilingual model, only 204 were political
actors that could be added to the dictionary. This low yield
is attributable to the system returning text that is not a named
entity, is political irrelevant or names that are too vague
(i.e common first or last names). The disadvantage of this
approach is substantial: coders spend a large amount of time
skipping irrelevant actors in order to find one to add to the
dictionary, which is frustrating and time-consuming. In order
to enhance the performance of this approach, we need to
build a customized Arabic-specific NER system. To build this
system, our coders have annotated 6,000 Arabic sentences for
NER model training and are currently actively working on
them. When that task is completed, we can train an improved
NER model, which will greatly improve the yield of this
approach.

The fourth approach we used was leveraging the information
available on Wikipedia. Our target Wikipedia data was the data



in the info box of politically relevant actors. To scrape the data,
we compiled a list of links of Wikipedia categories, such as
categories of government ministers, and prominent politicians
in the 22 Arab states, and wrote a specialized scraper to
extract this Wikipedia data. The data contained the name of
the actor, any roles he/she occupied, and any dates associated
with these roles. Once we scraped the data, we developed
our third web-based interface, “Wiki-Interface” (Figure 3), in
which the actors’ data was repopulated into the interface, and
presented to the coders. The coders insured the consistency
of the data, such as removing any extra title information
from the actor’s name, and translating names and roles from
English to Arabic for actors with no Arabic Wikipedia pages.
Coders also discarded actor entries that had no role data
associated with them. Each actor role was presented to the
coders as a card which they could either commit or discard.
A link to the Wikipedia page that the current actor data was
scraped from was also provided to help coders disambiguate
any uncertainties they had. Using this interface we generated
entries for 2,327 actors, totaling 4,286 role period ranges.

Fig. 3. Wiki biography based interface, each “card” represent a role for the
actor

The advantage of this approach is that coders are only
working on the actors that are politically relevant since we only
scraped entries from politically relevant Wikipedia category
pages. Coding is also extremely fast, as the highly structured
information is presented to the coders with the date ranges
pre-populated. The disadvantage is that not all politically
relevant actors have Wikipedia pages, nor do these pages
always have biographical sidebars. Organizations also do not
have biographical sidebars as people do, making this interface
useful only for coding people.

With these aforementioned interfaces, and in order to get
more accurate records, we implemented an “unsure” strategy,
allowing coders to flag a record as unsure if coders were not
confident about what they tagged. We then implemented a peer
review interface for the coders to check each others’ unsure

records and make corrections, and had a supervisor track each
coder’s performance. In all our approaches, we kept our coders
in the loop by taking their feedback as an input to our design
process.

Fig. 4. Peer review interface to keep track of the unsure records and allow
multiple people to view and verify.

V. CODING TEAMS

In order to assist with our dictionary development, we hired
8-10 Arabic coders. The coders were mostly undergraduate
students and native Arabic speakers with direct experience in
teaching the language. We split the coders into two teams:
Team 1 and Team 2. Within each team, coders were paired
into groups of two to perform the task at hand and to verify it,
with one performing and the second verifying. If both coders
in the pair were unsure, the interfaces allowed the coders to
flag the task. Other coders may then contribute to completing
the task. Having such a team structure helped the coders get
accustomed to the task faster and develop shared norms for
approaching coding issues.

This team setup as well as our interfaces has many ad-
vantages. First, the division of the tasks and the verification
mechanism ensured better results and higher accuracy. Second,
our web-based interfaces allowed for much greater flexibility
of work for our coders, especially whom were abroad or
working remotely. The ease, clarity, and segmentation of tasks
allowed for very cheap training cost, as well as fast adaptation
of tasks by the coders. Third, having various interfaces allowed
much more feedback and tweaking in the developmental side,
which made it easier to accommodate coders needs.

The main disadvantage of our setup is the decentralization.
Having various interfaces for related tasks can lead to un-
organized and sparse results. To avoid that, we had a strict
time-line to how we used those interfaces, which team used
it, and when to transition to another interface, which seemed
to help greatly in this regard.

Aside from using the interfaces to code, the coders attend
weekly meetings with the interface development team to pro-
vide feedback about the interfaces and discuss questions about
the coding process. Holding these meetings is an important
aspect of eliciting feedback, understanding the language re-
quirements, and assessing the coders’ needs, which is a driving
factor in the development of the most effective interfaces.

VI. EVALUATION

We track how much time each coder takes when working on
the Wiki-Bio interface and the frequency-NER based interface



TABLE I
DESCRIPTION OF EACH INTERFACE USED BY CODERS FROM TEAM 1 AND TEAM 2.

Interface Teams Description

Regular Interface (Figure 1) Team1 Extracted nouns and verbs from raw sentence with auto complete and synonym-aided feature.
Fast Coding (Figure 2) Team1 Frequency ordered and NER based PER and ORG coding.
Wiki Enhanced (Figure 3) Team1, Team 2 Provided pre-filled information from Wikipedia name cards.
NER Annotation (Figure 8) Team1 Interactive NER model updating interface provided by Prodigy.

with the intention of understanding which interface works
better for a given time budget. The coders’ performance is
presented in Table II below. We did not track time per task in
the original interface because of the way we bundled many
tasks into one: coders added between 0 and a half-dozen
dictionary entries per sentence, with sometimes several roles
for each actor, as well as identifying the source and target
actors in the sentence. We therefore cannot unbundle the task
timing to identify how long each discrete task took.

Fig. 5. Performance of wiki-based approach of 5 coders

Fig. 6. Total number of actors coded for each approach

VII. DISCUSSION

We know our NER based method was unlikely to perform
well because the NER model we used was trained on poor

Fig. 7. Variance of time spent on each actor of different coders versus the
number of actors coded by each coder

multilingual data and does not work well on Arabic. Still,
we were surprised at how poor the performance was: within
7,384 records we were only able to code 204 politically
relevant ones. Once we find a political relevant entity with
this interface, though, coding it only requires an average of
one minute. One possible explanation for this relative speed
is that we present five related sentences in which the actor
appears so that the coders get a richer understanding of the
actor and they can create the entry faster. This suggests to
us that if we can get a better working version of Arabic-
Language specific NER model, it will significantly enhance
our yield and overall performance. We found the performance
of Wiki-bio approach to be unexpectedly slow. We expected
it to be faster than the NER-based coding approach since we
had already pre-populated the time range for each entity and
provided the URL to link the actor back to their Wikipedia
page. For each actor entity it still took six minutes to code on
average, and for each role it took roughly three minutes. A
possible reason for the slow speed is that we do not provide
the same background content in this interface as the NER
based coding interface does. While coding different roles on
each possible actor the coders still needed to review the code
book to identify the correct role. Note that we only have 204
NER based actors coded, so the sample size is small and our
time estimates may therefore be imprecise. Another interesting
result we found related to coder efficiency in Fig.5: the longer
a coder has been coding over time, and presumably the more
experienced a coder becomes, the more average time it takes



TABLE II
PERFORMANCE OF CODERS WITH DIFFERENT CODING APPROACHES

Approach Actors coded Actors Skipped Total time (seconds) seconds per Actor Second per Role

Regular Interface 6,387 - - - -
Wiki Translations 5,696 - - - -
NER-based 204 7,180 11,343 55.6 -
Wiki bio 2,459 - 926,289 377 202

Fig. 8. Using Prodigy to train a named entity recognition system

the coder to code an actor. This may be because the more
actors a coder encounters, the higher the probability that the
coder will encounter ones that are more difficult to decide
how to code. It could also be that as coders become more
experienced, they are more likely to consider various possible
roles or more complicated coding issues. From Fig.7 we can
see that the variance of time per task increases along with the
number of actors coded, which appears to support our first
explanation.

VIII. SUMMARY AND RELATED WORK

Using the above approaches for developing dictionaries, we
were able to complete Arabic actor and verb dictionaries with
coverage equivalent to the English language dictionaries in less
than two years of work, compared to the two decades that
the English language dictionaries took to produce. We have
used UniversalPetrach to generate events from our corpus of
millions of Arabic sources using the dictionary we developed,
and we expect to make comparisons between it and the English
corpus after final debugging and quality checking. It is difficult
to determine how many actor dictionary entries is sufficient
for us to generate accurate event data. In any case, within
our budget we aim to generate as many politically relevant
actor and verb dictionary entries as possible, so we need the
fastest possible coding framework to achieve this. We could
potentially do better than one minute on NER coding and
six minutes on Wiki-bio coding by applying crowdsourcing
strategies, e.g. we could make recommendations to our coders
and simply ask them verify them; in that way they would just
need to choose yes or no instead of entering detailed infor-

mation. Prodigy is a promising framework that can provide
us that functionality [13]. We are currently developing a more
robust Arabic specific NER model to be used on our “NER
and Frequency” based approaches. If we are successful, the
yield and performance of the “NER” based approached will
be significantly improved.
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