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Abstract—Identifying event trigger words and classifying event
types known as the event detection task is a fundamental step for
extracting event-related knowledge from textual sources. Exam-
ples of the topics within documents include “military conflict,”
“earthquake,” “concert tour,” “wrestling,” and others. Topical
information embedded within documents where the events are
extracted from is rarely explored. Rich topic information could
be a helpful indicator of the event’s type. Semantically similar
topics share similar event types, while event types are quite
different between distinguishable document topics. In this paper,
we explored a novel method of integrating document topic
information to complete the event detection task. We summarized
our contribution as the following: we used the topic information
of the documents to generate topic comprehensive sentence
representations. We adopted a multi-task deep neural network,
trained with event detection and topic classification tasks. We
evaluated our method with two datasets that are designed for
more diverse and general event types event detection MAVEN [1]
and RAMS [2]. We demonstrated that the topic-aware model
outperformed the baseline model F1 score on both MAVEN and
RAMS datasets. An analysis in the few-shot event types scenario
showed that topic-aware model can beat the baseline by up to
13.34% on the F1 score for the rare event types.

I. INTRODUCTION

Event detection is an important task of information re-
trieval in the natural language processing. Event detection
and monitoring are the focus of public affair management for
governments and researchers as timely understanding of social
outbursts and evolution of popular social events [3], [4], [5].
Structured events are used in the construction domain for the
development of knowledge bases [6], [7], [8]. In the business
and financial domain, event detection helps companies quickly
discover market responses of their products and influencing
signals for risk analysis and suggestions [9], [10]. Despite
its promising applications, event detection is still a rather
challenging task. As events are diverse, they come with
different structures and components. Further, natural languages
are often with semantic ambiguities and discourse styles.

Events are typically created manually or developed
with a seed of manually labeled patterns. Event detection
aims to find the event triggers — the main word that
most clearly expresses an event occurrence, typically a
verb or a noun. Event detection techniques then use the
triggers to classify the event type into a predefined set.

Fig. 1. The single sentence contains four event-trigger words that belong to
different event types.

Figure 1 shows events types and triggers described in
the MAVEN dataset [1]. In the sentence, “In 1995,
three of the police officers involved
stood trial for Gardner’s manslaughter,
but were acquitted.” where “involved” triggers a
cause to be included event, “trial” triggers a criminal
investigation event, “manslaughter” triggers a killing event,
and “acquitted” triggers a judgment communication event.

Early approaches for event detection rely on pattern match-
ing [11]. Later, researchers started testing machine learning-
based approaches such as support vector machines to address
event detection [12]. More recently, deep learning has been
successfully applied to various NLP tasks including event
detection. The current approach to build a deep neural network
is to first take word embeddings as input and output a classi-
fication result for each word. Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN) , and Graph Neural
Network (GNN) have been explored and applied [13], [14],
[15], [16], [17], [18].

However, none of the previous efforts take event topic in-
formation into consideration for the event detection task [14],
[15], [19], [16]. Examples of topics that the documents belong
to include “terrorist attack”, “horse race”, “earthquake” as
shown in Table I. Intuitively, topic information is important
for event detection tasks as documents belonging to different
topics naturally have different event type distributions. There
are several existing event detection datasets, for example,
ACE05 [20], ERE series [21], [22], TERRIER [5], [23], [24],
[25]. In order to validate our assumption, we did analysis with
MAVEN [1] dataset. We chose MAVEN because it has a
large range of event types compared to others. For example,
Maven has 168 event types while ACE05 contains 8 event
types and 33 specific subtypes. We gathered all the 168 event978-1-6654-8045-1/22/$31.00 ©2022 IEEE



TABLE I
AN EXAMPLE OF EVENT TYPE DISTRIBUTION (TOP 5) FOR THREE TOPICS: EARTHQUAKE, HORSE RACE, AND TERRORIST ATTACK.

earthquake event types catastrophe causation damaging coming to be destroying
event types distribution 0.255 0.076 0.072 0.043 0.033

horse race event types competition process start process end causation hold
event types distribution 0.201 0.104 0.058 0.047 0.036

terrorist attack event types attack killing terrorism bodily harm causation
event types distribution 0.145 0.074 0.058 0.049 0.035

civilian attack event types killing attack statement causation bodily harm
event types distribution 0.094 0.068 0.041 0.035 0.032

types in MAVEN. Then, for each topic, we normalized the
event type occurrence count to a 168 dimensional vector, of
which all the 168 elements in the vector summarize to 1..
We used this vector to represent the event distribution of the
current topic. For each pair of the topics, we performed a two
sample Kolmogorov–Smirnov test and report the P-Value as a
heat map in Figure 2. When the P-Value is bigger than 0.05, it
means we can not reject the null hypothesis that the two topics
follow the same event type distribution. When the P-Value is
less than or equal to 0.05, we can reject the null hypothesis.

Fig. 2. P-Value from Kolmogorov–Smirnov test on distribution of event types
across topics. The smaller the P-Value in the cell is, the bigger the difference
of event type distributions between two topics. (Partial version. Full version
in Figure 3 )

Based on Figure 2 we can see when talking about event type
distribution, topic “terrorist attack” is most similar to “military
conflict” and “civil conflict” topics with corresponding large
P-Value 0.61 and 0.52, respectively. Topic “horse race” is
most similar to “international ice hockey competition” and
“individual golf tournament” topics with corresponding P-
Value 0.43 and 0.29, respectively. In Table I, we show the
top-5 event types for the 3 topics: “earthquake”, “horse race”
and “terrorist attack”, from which we can clearly see that event
type distributions are affected by different topics. Semantically
similar topics share similar event type distributions, while
semantically different topics have heterogeneous distributions
of event types. This inspires us to explore effective ways of
using topic information in the event detection task to improve
its performance.

We summarize our contributions as the following: (1) We
perform detailed analysis explaining why topic information
helps on event detection task. (2) We introduce topic name en-
hanced sentence representation for event detection and explore
different ways to embed the topic name information including:
using attention-based versus concatenation-based interaction,

[CLS] versus token average based attribute embedding and
using topic keywords to generate topic embedding versus
using topic names. (3) We introduce topic classification and
event detection as a multi-task learning setup, which further
improves the performance and conduct experiments with two
event detection datasets that have a variety of event types. We
achieve up to +1.8% on the F1 score compared to the baseline.
(4) Furthermore, we show the topic-aware model proposed can
improve the few-shot event types scenario by a large margin
+13.34% on the F1 score and provide heuristic explanations
in the case study.

The rest of this paper is organized as follows. Section II
gives the definition of NLP event detection task. Section III
describes the system encoders, representations, and decoders
used for event detection and topic classification training.
Section IV describes experimental results. Section V conducts
analysis of the results and Section VI discusses related work.
Finally, Section VII concludes and suggests future work.

II. EVENT DETECTION DEFINITION

An event is a specific occurrence of something that happens
in a certain time and a certain place, which can frequently
be described as a change of state [26]. An event structure is
defined as follows in ACE05 terminology:

• Event Mention: a phrase or sentence describing an event,
including a trigger and several arguments.

• Event Trigger: the main word that most clearly expresses
an event occurrence, typically a verb or a noun.

The event detection tasks are defined as follows:
• Trigger Identification: aims to identify the most important

word that characterizes an event.
• Trigger Classification: aims to classify the event trigger

into predefined, fine-grained categories.
Recent neural network methods typically formulate event
detection task as a token-level multi-class classification task
[27], [15] or a sequence labeling task [28], and only report
the trigger classification results [1], [29]. An additional type
N/A is introduced and classified at the same time to indicate
the candidate is not a trigger. We adopt the above settings and
evaluate the performance with precision, recall and F1 on a
micro level.

III. METHODOLOGY

TAED leverages the document topics for event detection.
The underlying intuition is that event type distributions are



Fig. 3. P-Value from Kolmogorov–Smirnov test on distribution of Event Types across Topics. The smaller the P-Value in the cell is, the bigger the difference
of event type distributions between two topics. (Full version)

different across the topics. Our model uses the topic name em-
bedding to enhance the sentence representation. Furthermore,
we have modeled topic classification and event detection as a
multi-tasking learning setup.

A. Sentence Encoder

The sentence encoder represents the text tokens of the sen-
tence (x1, x2..., xT ) as low-dimensional, real-valued vectors.
To effectively capture the long-range dependencies between
the input tokens, we use BERT [30] whose underlying layers
use the self-attention mechanism to mitigate the long-range



Fig. 4. TAED Architecture: Using topic name embedding along with the sentence tokens embedding as the enhanced representation of the sentence. Utilizing
multi-task learning of event detection and topic classification together to further improve the performance.

dependencies issue,

h1, h2..., hT = Encoder(x1, x2, ..., xT ) (1)

where hi ∈ Rd.

B. Topic Encoder

Our topic encoder encodes the topic information by using
the topic name or topic representative vocabulary that is
mined by using the ranked tf-idf features from each topic.
For example the top-5 representative vocabularies for “civilian
attack” topic is: “massacre”, “attack”, “kill”, “police”, “peo-
ple”. Similarly we use BERT as encoder to encode the topic
information. Different from the sentence encoder, here we use
the [CLS] token (red, solid-border token in Figure 4) returned
from BERT encoder to represent the entire information carried
by the topic keywords.

htopic = TopicEncoder(topicword1, ..., topicwordN ), (2)

where htopic ∈ Rd

C. Topic-Aware Sentence Representation

To associate the sentence representation with its document’s
topic, we append the topic vector representation htopic to
each token vector representation h = (h1, h2, ..., hT ) in the
sentence, shown in Figure 4. Then we get the topic-aware
contextualized vector representations of the sentence tokens

h̃ = (h̃1, ..., h̃T ) = (h1;htopic, .., hT ;htopic) (3)

where h̃i ∈ R2d and ; operator represents concatenation.
The drawback of using concatenation is the topic information
contributes to each token in the sentence evenly. In order to

address this issue, we proposed an attention based interac-
tion method to obtain a topic-aware comprehensive sentence
representation. The idea of attention was first used in Neural
Machine Translation (NMT) [31]. Instead of paying attention
to everything, the attention mechanism is designed to highlight
the important information in a sequence. In order to calculate
the attention we first need to define query, key, value used
in our scenario. For the query, we obtain a d-dimensional
vector htopici by taking average of htopic and hi. We use
(h1, h2, . . . , hT ) for both key and value. Given index i, a dot
product operation is applied on htopici and hj , where j ranges
from 1 to T . Each of the dot product operation generates a
weight αij , calculated as:

α̃ij = htopici · hj , and (4)
(αi1, αi2, . . . , αiT ) = softmax(α̃i1, α̃i2, . . . , α̃iT ). (5)

In this way, given a query vector htopici , we obtain a se-
quence of weights (αi1, αi2, . . . , αiT ). The weights are used
to measure the importance of tokens in the sentence when
talking about the topics. A higher weight indicates a higher
importance. Afterwards, a topic-comprehensive representation
for the query htopici can be obtained by calculating:

h̃i =

T∑
j=1

αij · hj . (6)

Similarly, we can obtain h̃i for each query vector htopici ,
where i ranges from 1 to T . Eventually, a sequence of
topic weighted topic-aware hidden vectors (h̃1, h̃2, . . . , h̃T )
are obtained. Each h̃i is a d-dimensional vector.



D. Event Detection CRF Decoder

We adopt the BIOE tagging scheme. “B”/“E” indicates the
corresponding word is the beginning/ending of an entity value,
“I” means the word is inside an entity value, and “O” means
the word is outside any entity value. Table II shows an example
of identifying “took place” as a trigger of event type process
start.

We feed the topic-aware contextualized token representa-
tions (h̃1, h̃2, ..., h̃T ) to CRFs [32] to get the sequence of
BIOE tags with the highest probability:

(y1, y2, ..., yT ) = CRF(h̃1, h̃2, ..., h̃T ), (7)

CRF decoder [33] can enforce the tagging consistency that
captures dependency between the output tags. For example, if
we already know the starting boundary of an attribute (B), this
increases the likelihood of the next token to be an intermediate
(I) or end of boundary (E), rather than being outside of
boundary (O). CRF contains a linear layer and a transition
matrix, which are used to calculate the emission and transition
scores for the tag predictions respectively. The score for an
input text sequence X which belongs to a specific topic to be
assigned with a tag sequence Y can be calculated as:

score(X, topic, Y ) =

T−1∑
i=1

Tyi,yi+1
+

T∑
i=1

Ei,yi
, (8)

where T ∈ Rm×m is the transition matrix, Tij is the transition
score of i-th tag to the j-th tag. E ∈ RT×m, Eij represents the
i-th token is assigned j-th tag in the tagset. m is the number
of tags in the tagset which includes different B, I, E tags for
each event type and a shared O tag. For example, given two
event types Killing and Cause to be included, there will be 7
tags including B-Killing, I-Killing, E-Killing, B-Cause to be
included, I-Cause to be included, E-Cause to be included
and an O tag. Let a be the number of event types, then m =
3a+ 1.

E. Event Detection Training

The event detection task is trained to maximize the log
likelihood of (X ,topic,Y ) triplets in the training set, the score
of given tokens, and topic that has predicted tags Y is given
in equation (8), and the log likelihood to maximize is defined
as:

log p(Y |X, topic) = log
score(X, topic, Y )∑

Y ′∈tagsetT score(X, topic, Y ′)
.

(9)
Assuming we have N samples in the training set, then the loss
(ℓ) to minimize for the event detection task is defined as:

ℓevent detection = −
N∑
i=1

log p(Ŷi|Xi, topici), (10)

where Ŷi is the ground truth label for sentence i.

F. Topic Classification Training

Our topic classifier classifies each sentence into its corre-
sponding topic. In order to avoid information leakage, instead
of using the topic-aware contextualized token embeddings
h̃ from equation (3) to classify the topics, we directly use
the [CLS] token representation denoted as hsentence from the
sentence encoder (the purple, dashed-border token in Figure 4)
to classify the topic.

(p1, ..., pC) = softmax(Wthsentence + bt)

Losstopic = −
N∑
j=1

C∑
i=1

yij log(pij),
(11)

where Wt ∈ RC×d, bt ∈ RC and C is the number of the
topics in the training dataset.

G. Multi-Task Training

We jointly train TAED for event detection and topic clas-
sification in a multi-task learning [34], [35], [36] setting, by
combining the loss of the two tasks:

ℓ = ℓevent detection + γ·ℓtopic (12)

where γ is a non-negative hyper-parameter. By training the
model in a multi-tasking setting, both of the event detection
and topic classification tasks will contribute to the contextual-
ized vector representation learning for the sentence and topic
tokens.

IV. EXPERIMENTS

In order to validate our hypothesis that the event topic
information can help event detection, we used the MAVEN [1]
dataset which has a large range of event types (168) and also
comes with the topic labels that was annotated by humans to
conduct our experiments. Furthermore, we also test our model
with the RAMS [2] dataset which also comes with many event
types (139). Though it does not come with topic labels for
each document, we use LDA [37] to generate pseudo topic
labels. For the RAMS dataset topic generation, we choose
the topic number from the range of [10, 15, 25, 30, 35] and
manually judge the quality of the topics returned and end up
using the topic number of 25 as the best fit for the RAMS
dataset. The pseudo topic name is from the outputs of the
LDA, which is the combination of the top 5 important words
for the specific topic. The pseudo topic names are listed below
in Table III for RAMS dataset. We first tested our work on
full MAVEN dataset. Further, due to the MAVEN dataset only
releases the gold labels for training and validation dataset
instead of the gold labels for test dataset, in order to speed
up our experiments with the data that has gold labels, we
combined the training and validation dataset, then separated
the merged dataset further into a 70%/15%/15% distribution.
Additionally, the topic occurrence in the original dataset is
extremely skewed, with the highest topic occurrence as 984
and lowest topic occurrence as 1. We further sampled several
topic balanced datasets to test the effectiveness of our proposed
method in a topic balanced scenario.



TABLE II
AN EXAMPLE OF THE TAG SEQUENCE FOR EVENT TYPE “PROCESS START” ANNOTATED WITH THE BIOE SCHEME.

the Total Nonestop Action Wresting ( TNA ) promotion that took place on October 23

O O O O O O O O O O B-Process Start E-Process Start O O O

TABLE III
PSEUDO TOPIC LABELS GENERATED BY LDA FOR RAMS DATASET

Topic index Pseudo Topic Label

0 photo caption image hide force
1 oil sanction export year price
2 inform secure intelligence government email
3 police attack shoot fan man
4 email investigate fbi hack department
5 attack bomb build kill force
6 world war think agreement
7 president state country nato unit
8 nuclear bank missile system weapons
9 attack report investigate news told

10 force rebel group military air
11 women attack share right day
12 isra aid human intern right
13 support crimea muslim use
14 campaign republican president donald democrat
15 president support campaign former bush
16 million tax percent wall pay
17 foundation million report government department
18 vote voter elect party poll
19 women sexual rape extradite year
20 senate gop bill seek ryan
21 white house democrat party polite
22 question ask debate cnn death
23 polite think president attempt thing
24 state unit war foreign world

Furthermore, to validate that topic can be used as a “bridge”
to transfer knowledge from high resource event types to
low resource event types, we grouped event types based on
their occurrences in the training dataset defined in Table V.
Examples of low resource event types can be from Rare group,
with the occurrence of the event type less than 20 times.
While high resource event types can be from High group,
with the occurrence of the event type more than 500 times.
We generated the Macro average group precision, recall and
F1 score accordingly.

A. Performance

Altogether, we tested our topic-aware event detection frame-
work on 5 settings of MAVEN which include the following:
full MAVEN dataset, two new splits of the train and validation
dataset which has the gold labels and two new splits of the
train and validation datasets sampled in a topic balanced way.
On each of the setting, we included 3 random seeds and report
the means and variations of each metric in Table IV. For the
generation of the topic balanced dataset, we first removed the
tail topics whose topic occurrence is less than a threshold, and
then down sampling the head topics to the median occurrence
of the topics. BERT-CRF is using BERT as the encoder and

CRF as the decoder. BERT-CRF-TOPIC is our TAED archi-
tecture as shown in Figure 4. The topic-classification-weight is
the weight set on the topic classification task when setting the
event detection task weight as 1. The performance of topic-
aware and non-topic-aware model are shown in Table IV. We
saw that on full MAVEN and two generated dataset settings
from splits of train and validation dataset, topic-aware model
improves the baseline around 0.5% on the entity level micro
F1 score, which is a commonly adopted metric for event
detection task [1]. For the two topic balanced datasets, the
improvement on the F1 score is around 1.8%. On the RAMS
dataset, we also saw improvement on the F1 score around
0.6%. We observed that the performance of event detection
model on RAMS is relative low. By further investigation on
the training data, 25% of event types have less than 27 labeled
instance which explains this.

The group performance based on high and low resources
event types classification is shown in Figure 5. We observed
that topic-aware model is doing much better on the low
resource event types like Rare and Low group, with up to
13.34% improvement on F1 score compared to non topic-
aware model.

B. Ablation Study

In the ablation study, we first evaluate different ways to
generate the topic embeddings. Further, we conduct experi-
ments to show the effectiveness of different ways the topic
information interacting with the main contextual sentence.
Lastly, we carried out experiments to show that auxiliary topic-
classification task is effective.

a) Topic Name Encoding.: As shown in Table VI, we
observed that using the topic information to generate the
context embedding without using a multi-task learning (set
weight = 0) is effective. We got improvement on the F1 by
1.07% from 63.66% to 64.73%.

We further tried different ways to generate the topic name
embedding. Instead of using the [CLS] token hidden repre-
sentation, we tried to use the averaged topic name tokens
embeddings. Furthermore, aside from concatenating the topic
name embedding on top of the context token embedding, we
also experimented to use topic name attend to the context
sentence tokens. We see similar F1 performance for the above
variations as show in Table VII.

b) Topic Name Variations.: The column “general event
word removed” shown in Table VI indicates whether or not
we remove the very general word “event” from the topic
name. Since the original topic name could be like: “recurring
event”, “historical event”, “wrestling event”. After removing
the word “event”, the topic name should look like “recurring”,



Fig. 5. Topic-aware/non-topic-aware model Macro P, R, F1 performance with error bars on different event type occurrence groups defined in Table V

TABLE IV
PRECISION, RECALL, AND F1 PERFORMANCE ACROSS SIX DIFFERENT DATASETS WITH AND WITHOUT TOPIC INFORMATION

Model Type Dataset P(%) R(%) F1(%)

BERT-CRF Full MAVEN Data 66.15± 0.24 69.64± 0.43 67.85± 0.07
BERT-CRF-TOPIC Full MAVEN Data 66.28± 0.38 70.39± 0.40 68.27 ± 0.06

BERT-CRF Generated Data 1 65.18± 1.14 70.32± 2.96 67.63± 0.05
BERT-CRF-TOPIC Generated Data 1 66.21± 0.16 70.23± 0.16 68.16 ± 0.03

BERT-CRF Generated Data 2 65.65± 0.30 69.74± 0.38 67.63± 0.08
BERT-CRF-TOPIC Generated Data 2 66.35± 0.12 70.14± 0.34 68.19 ± 0.10

BERT-CRF Generated Data Topic Balanced 1 64.09± 1.67 62.68± 1.72 63.33± 0.05
BERT-CRF-TOPIC Generated Data Topic Balanced 1 63.9± 0.3 65.17± 0.18 64.52 ± 0.09

BERT-CRF Generated Data Topic Balanced 2 63.93± 1.51 63.21± 1.28 63.53± 0.11
BERT-CRF-TOPIC Generated Data Topic Balanced 2 64.41± 0.28 66.50± 0.24 65.44 ± 0.02

BERT-CRF RAMS 34.05± 0.14 33.83± 0.03 33.94± 0.05
BERT-CRF-TOPIC RAMS 36.67± 0.12 32.69± 0.04 34.56 ± 0.04

TABLE V
EVENT TYPE GROUPS BASED ON ITS OCCURRENCE FREQUENCY IN TRAINING DATA

Groups Occurrence Event Type Count Event Type Examples Macro P(%) Macro R(%) Macro F1(%)
topic non-topic topic non-topic topic non-topic

Rare (0,20] 38 besieging, ratification 26.12± 0.49 11.29± 1.09 19.63± 1.03 6.76± 0.42 21.49 ± 0.54 8.15± 0.36
Low (20, 50] 35 warning, rescuing 56.39± 1.17 50.25± 1.50 49.99± 1.71 35.35± 4.25 50.66 ± 1.46 38.25± 3.82
Medium (50, 100] 35 assistance, escaping 59.12± 0.42 61.16± 1.54 56.78± 0.89 51.72± 1.44 56.51 ± 0.47 54.07± 0.57
Sub-high (100, 500] 53 damaging, destroying 64.06± 0.67 62.60± 0.23 70.00± 0.38 69.26± 0.51 66.03 ± 0.31 64.61± 0.38
High (500,∞) 7 catastrophe, causation 63.13± 0.75 61.93± 0.38 70.08± 0.60 71.78± 0.22 66.34± 0.38 66.39 ± 0.16

“historical”, “wresting” etc. This is going to help make our
topic embedding more discriminatory from each other. By
adding this pre-processing step for the topic name, we can see
that the performance gets improved, as shown in Table VI. We
further explored to add the most important keywords of the
topic along with the topic name to enrich the topic contextual
embedding. We aggregated the documents that belong to one
topic, and ranked the words in each topic by their tf-idf
features. We used the top-5 keywords as the representatives
and appended them to the topic name. Examples of added
keywords are shown in Table VIII.

However, after adding the keywords to the topic names,
the performance got a little bit worse, which could be caused
by the noise brought in by the keywords. For example, the
keyword “new” was added for the winter storm topic and
“1930” was added for the war topic.

c) Multi-Task Learning.: We have conducted experi-
ments by using different weights on topic classification task,
where γ in equation (12) ranges from 0 to 100 where 0 means
we ignore the topic classification loss during back propagation.
We saw that the sweet spot to achieve the best performance
is to set the classification weight as 1 shown in Figure 6.

By setting equal loss weight on event detection and topic
classification tasks, we further improved the F1 score by an-
other 0.73% on top of the topic name embedding contribution.

C. Hyperparameter Settings
We implement Topic Aware Event Detection framework by

using functionality provided by PyTorch and Transformers
package. We adopt bert-base-cased version of BERT model
and use the default AdamW optimizer with the Learning rate
as 5∗10−5 and Adam Epsilon as 1∗10−8. An dropout layer is
introduced after the BERT encoder layer with a dropout rate
0.3. And the training batch size for the model is 16.



TABLE VI
TAED PERFORMANCE WITH DIFFERENT TOPIC-CLASSIFICATION

WEIGHTS, PERFORMANCE OF GENERAL EVENT WORDS KEPT/REMOVED
AND PERFORMANCE OF EXTRA TOPIC KEYWORDS ADDED ON FOR A

SPECIFIC TOPIC.

Model Type topic-
classification
weight

general
event word
removed

P(%) R(%) F1(%)

BERT-CRF NA NA 66.91 60.71 63.66
BERT-CRF-TOPIC 1 True 64.44 66.52 65.46

BERT-CRF-TOPIC 0 True 63.52 66.04 64.73
BERT-CRF-TOPIC 0.1 True 62.37 66.66 64.44
BERT-CRF-TOPIC 0.5 True 64.17 64.92 64.53
BERT-CRF-TOPIC 2 True 63.76 65.33 64.51
BERT-CRF-TOPIC 10 True 64.26 58.73 61.38
BERT-CRF-TOPIC 25 True 63.8 47.34 54.33
BERT-CRF-TOPIC 50 True 60.36 33.06 42.65
BERT-CRF-TOPIC 75 True 55.98 25.69 34.99
BERT-CRF-TOPIC 100 True 49.58 19.38 27.79

BERT-CRF-TOPIC 1 False 65.59 64.29 64.93
BERT-CRF-TOPIC (with vocab) 1 True 64.97 65.08 65.02

TABLE VII
PERFORMANCE OF USING DIFFERENT WAYS TO GENERATE AND USE TOPIC

NAME EMBEDDING.

Model Type Topic Embedding Type P(%) R(%) F1(%)

BERT-CRF-TOPIC [CLS] 67 63.78 65.35
BERT-CRF-TOPIC Average Token Embedding 64.53 66.44 65.47

BERT-CRF-TOPIC [CLS] freeze 64.57 66.57 65.56
BERT-CRF-TOPIC Average Token Embedding freeze 65 65.64 65.32

BERT-CRF-TOPIC [CLS] (topic as attention) 63.93 67.02 65.44

V. RESULT ANALYSIS

The performance showed in Table VI combines both
the performance of trigger identification and trigger
classification. We further get the performance only for
trigger identification shown in Table IX. From which
we can see that the topic-aware event detection model
gets better performance on both trigger identification and
trigger classification. The error cases for event identification
could come from two sources: 1. The triggers are not
correctly identified. 2. The triggers are correctly identified,
but the classification of the identified triggers is wrong. We
conducted case studies for both of the error sources. “Flight
821 is the deadliest accident involving a
Boeing 737-500, surpassing the 1993 crash
of Asiana Airlines Flight 733, and was
the second-deadliest aviation incident in
2008, behind Spanair Flight 5022.” The topic
of the sentence is “aircraft accident” and the top event
type for this topic is catastrophe, causation, motions.
The gold labels for the triggers, “accident” and “incident”,
are both B-catastrophe. The non topic-aware model failed
to identify the triggers in the first place, while the topic-
aware model identifies the triggers and classifies them
correctly into a catastrophe event. Another example: “This
was the first southern stadium rock show
since ZZ TOP played to 80,000 people at
UT Austin on September 1, 1974 and tore up
the field.” Both of the method identified “played”
as the trigger. However, the topic-aware model predicted
“played” as B-competition while non topic-aware model

TABLE VIII
SAMPLE OF 10 TOPIC VOCABULARY TERMS AND TOP-5 REPRESENTATIVE

KEYWORDS.

Topic Topic Vocabulary

earthquake magnitude, occurred, quake, intensity, damage
winter storm snow, blizzard, snowfall, new, winds
tennis event open, doubles, slam, singles, djokovic
rugby match chiefs, brumbies, sharks, final, crusaders

university boat race oxford, cambridge, lengths, crews, goldie
war paulo, vargas, 1930, presets, garais

military operation bomb, manchester, ira, bombing, embassy
swimming event golds, medals, bronze, silver, freestyle pool

cricket series ashes, england, australia, test, wickets
civilian attack massacre, attack, kill, police, people

Fig. 6. F1 performance vs. γ (Each γ on X-axis has been run 5 times with
different random seeds represented by points with different colors. The curve
is the average performance of the 5 runs for each γ.)

predicted it as B-participation. The gold label for “played” is
B-competition. The topic of the sentence is “music festival”
and the top event type for this topic includes social event,
process start, arranging, competition. We can see that in
both of the error cases, topic information plays an important
role for event detection task.

In addition, we did case studies to understand the “bridge”
behavior of document topic on transferring knowledge from
high resource event types to low resource event types. For
example, besieging is a rare event type. The most frequent
topic that the event type belongs to is “military conflict”. The
“military conflict” further has frequent event types like: hostile
encounter, attack etc, which are semantically related to the
low resource event type besieging. By using the topic name
as prior knowledge along with the introduction of the topic
classification task, we reinforce the topic information in the
hidden layer sent to the decoder. The hidden layer thus carries
the information of high resource event types that belongs to the
given topic. This further leads to information transformation
to low resource event types that are semantically related to
high resource event types.

VI. RELATED WORK

Ji [38] employs an approach to propagate consistent event
arguments across sentences and documents. By combining



TABLE IX
PERFORMANCE OF BERT-CRF AND BERT-CRF-TOPIC ONLY ON

TRIGGER IDENTIFICATION

Model Type P(%) R(%) F1(%)

BERT-CRF 77.3 77.9 77.6
BERT-CRF-TOPIC 77.93 78.59 78.26

global evidences from related documents and local decisions,
a cross-document method is created to improve event detection
task. Li [39] proposes a joint framework which extracts
triggers and arguments together to alleviate the problem of
error propagation caused by event triggers and arguments
are predicted in isolation. Chen [27] proposes a dynamic
multi-pooling convolutional neural network according to event
triggers and arguments in order to reserve more crucial infor-
mation for event detection. Zhao [40] first learns event detec-
tion oriented embedding of documents through a hierarchical
and supervised attention based RNN, then further uses the
learned document embedding to identify event triggers. Yan
[41] uses a dependency tree based on graph convolutional
network with aggregative attention to explicitly model and
aggregate multi-order syntactic representations in sentences.
Du [42] formulates the event extraction task as a question
answering task that extracts the event arguments in an end-
to-end manner. Li [43] casts the event extraction task into
a series of reading comprehension problems, by which it
extracts triggers and arguments successively from a given
sentence. Yi [44] introduces a general framework for several
event extraction tasks that share span representations using
dynamic constructed span graph. The dynamic span graph
refines the span representations by allowing the co-reference
and relation type confidences to propagate through the graph.
Different from their work, we used the topic information to
enhance the sentence representation and further utilized the
topic classification task as a facilitator for event detection task
by having a multitask setup.

VII. CONCLUSION

In this study, we proposed a topic-aware event detection
method by using the topic name embedding to enrich the
contextual representations of the sentences along with the
multi-task setup of event detection and topic classification task.
We showed effectiveness of this method by testing on different
datasets and conducting ablation studies. We explored different
ways to generate topic embedding and different interaction
methods between topic embeddings and sentence embeddings.
A further analysis showed the topic-aware model architecture
beats the non-topic-aware model with a large margin in a
few-shot event type scenario. Furthermore, we analyzed the
event type distribution based on topics which fundamentally
explains why the sentence topic information can help the event
detection task.
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