
Towards Managing Complex Data Sharing
Policies with the Min Mask Sketch

Stephen Smart & Christan Grant
IRI 2017

What are data sharing policies?

What are data sharing policies?
● A sharing policy is a set of expressions that describe how, when, and what

data can be accessed.
● Examples:

○ ACL’s
○ IAM (Amazon Web Services)
○ Friend-based sharing
○ BitTorrent / Distributed data networks
○ Advertisements

What are simple data sharing policies?
A single expression describes how to share the data.

LIMIT = 10 random() < 0.167

What are complex data sharing policies?
Multiple expressions describe how to share the data.

Sharing Policy ID(s) Data

1 Record 1

3 Record 2

2 Record 3

1, 3 Record 4

1, 2, 3 Record 5

Ship OwnersShip
Operators

Freight
MoversFreight OwnersCrew Management

Companies
Many
Others

sdadaInsInsurances
Companieshj

Sharing
Platform

Ship
Owners

Ship
Operators

Freight
Movers

Freight
Owners

Crew
Management

Insurance

Many Others

Example: Health Tracker Pro

Example Data Set

time heart_rate blood_sugar body_temp

2016-02-20 04:05:06 71 95 98.6

2016-02-20 04:05:09 72 96 98.7

2016-02-20 04:05:09 72 94 98.7

2016-02-21 11:14:40 115 125 99.3

2016-02-21 11:14:43 115 124 99.5

2016-02-21 11:14:46 116 124 99.6

Example Data Set with Sharing Policies

time heart_rate blood_sugar body_temp high_hr low_bs high_bt

2016-02-20 04:05:06 71 95 98.6 0 1 0

2016-02-20 04:05:09 72 96 98.7 0 1 0

2016-02-20 04:05:09 72 94 98.7 0 1 0

2016-02-21 11:14:40 115 125 99.3 1 0 1

2016-02-21 11:14:43 115 124 99.5 1 0 1

2016-02-21 11:14:46 116 124 99.6 1 0 1

How can we store this policy metadata
more efficiently?

Probabilistic Data Structures
● Sacrifice a small amount of accuracy in exchange for space efficiency.
● Can answer queries about the data without needing to store the entire data

set.
● Examples

○ Bloom Filter
○ Count Min Sketch

+

Bloom Filter
● Probabilistic data structure that is used to test whether an element is a

member of a data set.
● Uses an array of bits and a collection of hash functions.
● Conceived by Burton Howard Bloom in 1970.

How Does it Work?
● Initialization:

Bloom Filter

How Does it Work?

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

● Initialization:
○ Set each bit in the array to 0.
○ Create k hash functions using technique from Kirsch et. al 2005

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2
○ h3(X) = 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2
○ h3(X) = 11

● Each hash value corresponds to an index in the array of bits.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2
○ h3(X) = 11

● Each hash value corresponds to an index in the array of bits.
● For each index calculated above, set the associated bit to 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bloom Filter

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2
○ h3(X) = 11

● Each hash value corresponds to an index in the array of bits.
● For each index calculated above, set the associated bit to 1.

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Bloom Filter

7

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2
○ h3(X) = 11

● Each hash value corresponds to an index in the array of bits.
● For each index calculated above, set the associated bit to 1.

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

Bloom Filter

2

Bloom Filter: Inserting
● Insert an element, X.
● Let k = 3

○ h1(X) = 7
○ h2(X) = 2
○ h3(X) = 11

● Each hash value corresponds to an index in the array of bits.
● For each index calculated above, set the associated bit to 1.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

11

Bloom Filter: Querying
● Query an element, W.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

Bloom Filter: Querying
● Query an element, W.
● Hash W using all k hash functions.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

Bloom Filter: Querying
● Query an element, W.
● Hash W using all k hash functions.

○ h1(W) = 5
○ h2(W) = 2
○ h3(W) = 1

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

Bloom Filter: Querying
● Query an element, W.
● Hash W using all k hash functions.

○ h1(W) = 5
○ h2(W) = 2
○ h3(W) = 1

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

1 2 5

Bloom Filter: Querying
● If all bits are 1, W is said to exist in the set.
● If all bits are not 1, W is said to not exist in the set.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

1 2 5

Bloom Filter: False Positives
● Hash collisions can result in false positives.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

Bloom Filter: False Positives
● Hash collisions can result in false positives.
● h2(W) collided with h2(X)

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

2

Bloom Filter: False Positives
● Hash collisions can result in false positives.
● h2(W) collided with h2(X)
● If the result of all k hash functions collided with any other element, all the bits

would be 1, even though W is not an element in the data set.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

2

Bloom Filter: False Negatives are Not Possible
● If an element exists in the data set, the Bloom Filter query will always return

true.

0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

Bloom Filter

Count-min Sketch
● Like a Bloom Filter but uses an array of counters instead of an array of bits.
● Used to determine an element’s frequency within a data set.
● Cormode et al. (2005)

Count-min Sketch: Inserting
● When inserting an element, the element’s primary key is hashed using all d

hash functions.
● The counter value at each index is then incremented.

Count-min Sketch: Querying
● When querying an element, the element’s primary key is hashed using all d

hash functions.
● The minimum counter value at each index is returned as the estimated

frequency for the element.

Count-min Sketch: Frequency Estimates
● The frequency can be overestimated due to hash collisions.
● The frequency cannot be underestimated.

Count-min Sketch: Parameters
● Sketch is sized according to the desired quality.
● The frequency estimate is bounded by an additive factor of ϵ with

probability c.
● ϵ and c are chosen by the developer.

Min Mask Sketch
● Like a Count-min Sketch but uses an array of bit strings instead of an array of

counters.
● Used to determine an element’s sharing policy information within a data set.
● This paper.

What Does the Bit String Represent?
● Each position in the bit string represents a possible expression to evaluate in

order to share or restrict data.

Expression 1 heart_rate > 114

... ...

Expression 4 random() < 0.167

... ...

Expression 8 LIMIT = 10

00101001

What Does the Bit String Represent?
● Each position in the bit string represents a possible expression to evaluate in

order to share or restrict data.
● If a bit at a particular position is set to 1, that expression is active

00101001
Expression 4
is active

Expression 1 heart_rate > 114

... ...

Expression 4 random() < 0.167

... ...

Expression 8 LIMIT = 10

What Does the Bit String Represent?
● Each position in the bit string represents a possible expression to evaluate in

order to share or restrict data.
● If a bit at a particular position is set to 1, that expression is active.
● If a bit at a particular position is set to 0, that expression is inactive.

Expression 1 heart_rate > 114

... ...

Expression 4 random() < 0.167

... ...

Expression 8 LIMIT = 10

00101001
Expression 4
is active

Expression 8
is inactive

Min Mask Sketch: Inserting
● The new element is hashed based on its primary key (x) using the d different

hash functions.

mms[h
i
(primary_key)] |= policy_string

Min Mask Sketch: Inserting
● The new element is hashed based on its primary key (x) using the d different

hash functions.

mms[h
i
(primary_key)] |= policy_string

00101001 New element
bit string

Min Mask Sketch: Inserting

00000001

00101001 New element
bit string

OR
Existing bit string
within sketch

● The new element is hashed based on its primary key (x) using the d different
hash functions.

mms[h
i
(primary_key)] |= policy_string

Min Mask Sketch: Inserting

00101001
=

00000001

00101001 New element
bit string

OR
Existing bit string
within sketch

Resulting bit string
within sketch

● The new element is hashed based on its primary key (x) using the d different
hash functions.

mms[h
i
(primary_key)] |= policy_string

Min Mask Sketch: Querying
● An element is hashed based on its primary key (x) using the d different hash

functions.

00101001h1(x):

10101101h2(x):

00100001h3(x):

Min Mask Sketch: Querying
● An element is hashed based on its primary key (x) using the d different hash

functions.
● The bit string with the minimum number of 1’s (active expressions) is returned

as the estimated sharing policy bit string.

00101001h1(x):

10101101h2(x):

00100001h3(x):

Min Mask Sketch: Querying
● An element is hashed based on its primary key (x) using the d different hash

functions.
● The bit string with the minimum number of 1’s (active expressions) is returned

as the estimated sharing policy bit string.

00101001h1(x):

10101101h2(x):

00100001h3(x):

00100001

Implementation
● PostgreSQL version 9.6.
● Min Mask Sketch extension written in C.
● Extension contains the following components:

Implementation
● PostgreSQL version 9.6.
● Min Mask Sketch extension written in C.
● Extension contains the following components:

○ Definition of the Min Mask Sketch data type.

Implementation
● PostgreSQL version 9.6.
● Min Mask Sketch extension written in C.
● Extension contains the following components:

○ Definition of the Min Mask Sketch data type.
○ Functions to create a new Min Mask Sketch

object.

Implementation
● PostgreSQL version 9.6.
● Min Mask Sketch extension written in C.
● Extension contains the following components:

○ Definition of the Min Mask Sketch data type.
○ Functions to create a new Min Mask Sketch

object.
○ Functions to insert an element into the Min

Mask Sketch.

Implementation
● PostgreSQL version 9.6.
● Min Mask Sketch extension written in C.
● Extension contains the following components:

○ Definition of the Min Mask Sketch data type.
○ Functions to create a new Min Mask Sketch

object.
○ Functions to insert an element into the Min

Mask Sketch.
○ Functions to retrieve the bit string for a given

element in the Min Mask Sketch.

Implementation
● PostgreSQL version 9.6.
● Min Mask Sketch extension written in C.
● Extension contains the following components:

○ Definition of the Min Mask Sketch data type.
○ Functions to create a new Min Mask Sketch

object.
○ Functions to insert an element into the Min

Mask Sketch.
○ Functions to retrieve the bit string for a given

element in the Min Mask Sketch.
● https://github.com/oudalab/mms

https://github.com/oudalab/mms

Workflow

PostgreSQL
user-facing
functions

C / PostgreSQL
wrapper functions

C
functions

Min Mask
Sketch

Usage: Creating an Empty Min Mask Sketch

CREATE EXTENSION mms;

CREATE TABLE example (
 example_sketch mms
);

INSERT INTO example VALUES(mms());

Usage: Inserting an Element

UPDATE example SET example_sketch =
 mms_add(example_sketch, "abc"::text, 6);

00000110
Element
Primary Key

Usage: Querying the Min Mask Sketch

SELECT mms_get_mask(example_sketch, "abc"::text)
 FROM example;

Benefit
● Consider the Health Tracker Pro example:

Benefit
● Consider the Health Tracker Pro example:

○ Each record takes 16 bytes to store.

Benefit
● Consider the Health Tracker Pro example:

○ Each record takes 16 bytes to store.

○ The simple approach of using 3 separate columns to store the sharing policy
metadata would add an additional 3 bytes to each record.

Benefit
● Consider the Health Tracker Pro example:

○ Each record takes 16 bytes to store.

○ The simple approach of using 3 separate columns to store the sharing policy
metadata would add an additional 3 bytes to each record.

○ Using c = 95% and ϵ = 0.001, the Min Mask Sketch would require 8.154 KB to
store the policy metadata.

Benefit
● Consider the Health Tracker Pro example:

○ Each record takes 16 bytes to store.

○ The simple approach of using 3 separate columns to store the sharing policy
metadata would add an additional 3 bytes to each record.

○ Using c = 95% and ϵ = 0.001, the Min Mask Sketch would require 8.154 KB to
store the policy metadata.

○ For 1 GB of data, The simple approach would require 187.5 MB.

Benefit
● Consider the Health Tracker Pro example:

○ Each record takes 16 bytes to store.

○ The simple approach of using 3 separate columns to store the sharing policy
metadata would add an additional 3 bytes to each record.

○ Using c = 95% and ϵ = 0.001, the Min Mask Sketch would require 8.154 KB to
store the policy metadata.

○ For 1 GB of data, The simple approach would require 187.5 MB.
○ This results in the Min Mask Sketch providing a 187.49 MB reduction in storage

cost for this example.

Downside
● Could over-share data due to the probabilistic nature of the data structure.

Downside
● Could over-share data due to the probabilistic nature of the data structure.
● Cannot deactivate an expression (move from a 1 to a 0).

Downside
● Could over-share data due to the probabilistic nature of the data structure.
● Cannot deactivate an expression (move from a 1 to a 0).
● When policies cluster together, the mms can become inefficient.

Future Directions
● Expanding the Min Mask Sketch to store types of metadata other than sharing

policy information.
● Rigorous study of the performance characteristics of the Min Mask Sketch.
● Comparison with other solutions to handling sharing policies.

References
Bloom, Burton H. "Space/time trade-offs in hash coding with allowable errors." Communications of the
ACM 13.7 (1970): 422-426.

Cormode, Graham, and Shan Muthukrishnan. "An improved data stream summary: the count-min sketch
and its applications." Journal of Algorithms 55.1 (2005): 58-75.

Kirsch, Adam, and Michael D. Mitzenmacher. "Building a better bloom filter." (2005).

Images Used
● http://cliparting.com/wp-content/uploads/2016/10/Young-person-clipart-kid.gif
● https://maxcdn.icons8.com/Share/icon/Data//database1600.png
● http://cliparting.com/wp-content/uploads/2017/01/Free-clip-art-doctor-clipartfest.jpeg
● https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Two_red_dice_01.svg/2000px-Two_re

d_dice_01.svg.png
● https://en.wikipedia.org/wiki/Bloom_filter#/media/File:Bloom_filter.svg
● https://i.stack.imgur.com/uh3NR.png
● https://raw.githubusercontent.com/docker-library/docs/01c12653951b2fe592c1f93a13b4e289ada0e

3a1/postgres/logo.png

http://cliparting.com/wp-content/uploads/2016/10/Young-person-clipart-kid.gif
https://maxcdn.icons8.com/Share/icon/Data//database1600.png
http://cliparting.com/wp-content/uploads/2017/01/Free-clip-art-doctor-clipartfest.jpeg
https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Two_red_dice_01.svg/2000px-Two_red_dice_01.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Two_red_dice_01.svg/2000px-Two_red_dice_01.svg.png
https://en.wikipedia.org/wiki/Bloom_filter#/media/File:Bloom_filter.svg
https://i.stack.imgur.com/uh3NR.png
https://raw.githubusercontent.com/docker-library/docs/01c12653951b2fe592c1f93a13b4e289ada0e3a1/postgres/logo.png
https://raw.githubusercontent.com/docker-library/docs/01c12653951b2fe592c1f93a13b4e289ada0e3a1/postgres/logo.png

Thank You!

Policy Log Approach
● What if the data sharing policies tend to cluster together?

Policy Log Approach

time heart_rate blood_sugar body_temp high_hr low_bs hide_bt

2016-02-20 04:05:06 71 95 98.6 0 1 0

2016-02-20 04:05:09 72 96 98.7 0 1 0

2016-02-20 04:05:09 72 94 98.7 0 1 0

2016-02-21 11:14:40 115 125 99.3 1 0 1

2016-02-21 11:14:43 115 124 99.5 1 0 1

2016-02-21 11:14:46 116 124 99.6 1 0 1

● What if the data sharing policies tend to cluster together?

Policy Log Approach
● A log of the data sharing policies and when they change would be a better

approach.
● This approach requires more space as a function of the policy changes.

key high_hr low_bs high_bt

2016-02-20 04:05:06 0 1 0

2016-02-21 11:14:40 1 0 1

Min Mask Sketch vs. Policy Log
● In the context of the

Health Tracker Pro
example.

● Min Mask Sketch
parameters:

○ ϵ = 0.001
○ c = 99%

