
Towards Managing Complex Data Sharing Policies with the Min Mask Sketch

Stephen Smart

School of Computer Science
University of Oklahoma

Norman, Oklahoma
Email: smart@ou.edu

Christan Grant

School of Computer Science
University of Oklahoma

Norman, Oklahoma
Email: smart@ou.edu

Abstract—More data is currently being collected and shared
by software applications than ever before. In many cases,
the user is asked if either all or none of their data can be
shared. We hypothesize that in some cases, users would like to
share data in more complex ways. In order to implement the
sharing of data using more complicated privacy preferences,
complex data sharing policies must be used. These complex
sharing policies require more space to store than a simple
“all or nothing” approach to data sharing. In this paper, we
present a new probabilistic data structure, called the Min Mask
Sketch, to efficiently store these complex data sharing policies.
We describe an implementation for the Min Mask Sketch in
PostgreSQL and analyze the practicality and feasibility of using
a probabilistic data structure for storing complex data sharing
policies.

Keywords-Min Mask Sketch; Probabilistic Data Structure;
Sharing Policies; Databases;

I. INTRODUCTION

The storage and management of large data sets is becom-

ing increasingly common. Many applications are continu-

ously recording data about its users and sharing this data to

other entities. This leads to data privacy issues and as more

data driven applications are coming into existence, these

privacy issues are becoming more complex. One approach

to handling data privacy when it comes to managing and

sharing user data is a simple “all or nothing” approach.

In other words, all of the data can be shared or all of it

is restricted. This approach works for many applications,

but what if the user would like to share a portion of the

data being recorded and hide the rest? What if the user

would like to share her data in a more complex manner

such as dependent on time, location, or a combination of

several conditions? These complex policies for data sharing

are becoming more practical with the development of more

data driven applications and the growth of the underlying

network in which these applications communicate, i.e. the

Internet of Things.

Complex data sharing policies such as those mentioned

above are difficult to implement in a modern database

management system. In addition to the overhead added to

the development life cycle, complex sharing policies also

require more space. Instead of a simple Boolean value

representing the “all or nothing” approach to data privacy

Figure 1: Pictorial depiction of a complex data sharing policy

discussed in Appendix II-B.

described above, more bits are needed to represent these

policies and every policy could potentially be unique to

a single data point in the data set. Many of these data

driven applications that are recording user’s personal data

exist in the mobile application domain, therefore space is

an important consideration.

In this paper, we will describe one approach to improve

the space efficiency of storing complex data sharing policies.

For example, Figure 1 pictorially describes a complex policy

that asks for a set of data records to be shared with a limited

set of users for a limited period of time. This approach

involves the development and use of a novel probabilistic

data structure, that we will call the Min Mask Sketch, to

store complex sharing policies in a small amount of space.

As with most probabilistic data structures, a small amount

of accuracy will be sacrificed in exchange for an increase in

space efficiency. One of the most popular probabilistic data

structures is the Bloom Filter [1]. The goal of the Bloom

Filter is to determine if any given item is a member of a large

data set without having to store the entire data set in memory.

Over the years, many new probabilistic data structures have

been developed that implement a similar approach used

in the Bloom Filter but include strategic modifications to

answer a different question about the original data. One

such data structure is the Count Min Sketch, which not only

answers the question of set membership, but additionally can

determine the frequency at which a given item exists in the

data set. The Min Mask Sketch is a modified version of the

Count Min Sketch [2] that can be used to determine a given

item’s privacy policy.

2017 IEEE International Conference on Information Reuse and Integration

978-0-7695-6243-8/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.23

1

2017 IEEE International Conference on Information Reuse and Integration (IRI)

978-1-5386-1562-1/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.23

1

2017 IEEE International Conference on Information Reuse and Integration

978-1-5386-1562-1/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.23

1

The remaining sections of this paper will be organized as

follows:

• Section II discusses the idea of complex data sharing

policies in more detail, lists several examples of various

sharing policies and describes some of the background

work that sparked many of the ideas introduced in this

paper.

• Section III introduces an example application and re-

lational schema to illustrate one potential practical

application of the Min Mask Sketch approach to storing

complex data sharing policies.

• Section IV explains the Min Mask Sketch data structure

in detail.

• Section V describes our implementation of the Min

Mask Sketch data structure in PostgreSQL 9.6

• Section VI analyzes the feasibility and practical appli-

cations of the Min Mask Sketch approach and compares

this approach with some alternative methods.

• Section VII summarizes the approach and provides

concluding remarks.

II. COMPLEX SHARING POLICIES

We define complex data sharing as the sharing of data

that requires fine grained access control. In other words,

each individual data point could be restricted based on a

different set of conditions. When data is shared in this way,

the standard approach to data privacy does not work. More

sophisticated approaches that use complex sharing policies

must be used.

That is, given a data set D = {r1, . . . r|D|}, a com-

plex policy C is described by a list of policies C =
{p1, . . . , p|C|} where each simple policy pi → Γk where

Γk ⊂ D and |C| > 1.

Below, we give examples of various sharing policies.

We show how a complex policy can be created from a

combination of simple sharing policies. We walk through

pictorial representations of both the simple sharing policies

and a complex sharing policy. For each policy example, we

describe a row level security policy that could be applied in

PostgreSQL for enforcing the example policy.

A. Simple Sharing Policy Examples

Figure 2: Sharing Data for a Limited Time Period

Sharing Data for a Limited Time Period: The policy

shown in Figure 2 describes sharing records from a data set

for a limited time period. For example, an owner of a data

set would like to share data for 24 hours after which the

shared data becomes private. A row level security policy as

shown in Figure 3 can be applied in PostgreSQL to enforce

this sharing policy.

CREATE FUNCTION create_limited_time_policy()
RETURNS void
$BODY$
DECLARE
end_time timestamp := now() + interval ’1 day’;

BEGIN
CREATE POLICY limited_time ON example_data_set
USING (now() < end_time);

END;
$BODY$
LANGUAGE plpgsql;

Figure 3: An example function to create a 24 hour time-

limited policy.

Figure 4: Sharing a Random Sample of Records

Sharing a Random Sample of Records: The policy

shown in Figure 4 describes sharing a randomly selected

subset of data. For example, an owner of a data set may not

want to share all of her data, but instead chooses to share

5% of records selected randomly from the data set. A row

level security policy as shown in Figure 5 can be applied in

PostgreSQL to enforce this sharing policy.

CREATE FUNCTION create_random_sample_policy()
RETURNS void
$BODY$
BEGIN
CREATE POLICY random_sample ON example_data_set
USING (random() > 0.95);

END;
$BODY$
LANGUAGE plpgsql;

Figure 5: An example function to create a policy that shares

a random sample of record.

Sharing a Biased Sample of Records: The policy

shown in Figure 6 describes sharing a subset of data

according to some bias. For example, a user located in

222

Figure 6: Sharing a Biased Sample of Records

“New York City” queries a weather data set, but only the

records relevant to New York City are shared. Assuming the

example_data_set contains a location attribute, a

row level security policy as shown in Figure 7 can be applied

in PostgreSQL to enforce this sharing policy.

CREATE FUNCTION create_biased_sample_policy()
RETURNS void
$BODY$
BEGIN
CREATE POLICY biased_sample ON example_data_set
USING (EXISTS

(SELECT 1
FROM users u
WHERE u.user == current_user
AND u.current_loc == location));

END;
$BODY$
LANGUAGE plpgsql;

Figure 7: An example policy to create a location-based

sharing policy.

Figure 8: Sharing Data with a Set of Other Users

Sharing Data with a Set of Other Users: The policy

shown in Figure 8 describes sharing data to a specific set of

users. For example, a Facebook user would only like his/her

data to be shared with users on his/her friends list. A row

level security policy as shown in Figure 9 can be applied in

PostgreSQL to enforce this sharing policy.

Sharing a Limited Number of Records: The policy

shown in Figure 10 describes sharing a set number of records

from a data set and restricting the rest. For example, an

owner of a data set would like to share a maximum of 100

records. A row level security policy as shown in Figure 11

can be applied in PostgreSQL to enforce this sharing policy.

CREATE FUNCTION create_set_of_users_policy()
RETURNS void
$BODY$
BEGIN
CREATE POLICY set_of_users ON example_data_set
USING (current_user IN
(SELECT user_name FROM allowed_users));

END;
$BODY$
LANGUAGE plpgsql;

Figure 9: An example function to create a sharing policy

between users in a data set.

Figure 10: Sharing a limited number of records

In this example, a limit_reached function takes two

parameters, table_name and limit, then ensures the

number of shared records does not exceed the limit.

CREATE FUNCTION create_limited_number_policy()
RETURNS void
$BODY$
BEGIN
CREATE POLICY limited_number ON example_data_set
USING (limit_reached(’example_data_set’, 100));

END;
$BODY$
LANGUAGE plpgsql;

Figure 11: An example function to create a policy that limits

the number of records shared.

B. Complex Sharing Policy Example

An example of a complex policy based on the definition

given above is listed in Figure 12. In the example data

set, each record is shared based on different conditions

described by the simple sharing policies. For records that

are associated with multiple simple sharing policies, the

conditions according to all those policies must be evaluated

to determine if the record should be shared. Policy 1 maps

to five records in the database, p1 → {r1, r4, r5, r6, r8}.
Further, Record 8 (described by policies p1 and p2) can only

be shared a limited number of times and for a limited time

period. A row level security policy as shown in Figure 13

can be applied in PostgreSQL to enforce this sharing policy.

The eval_complex_policy function retrieves the

bit string from the Min Mask Sketch associated with the

current table (the Min Mask Sketch structure is described

333

ID Policy Name Policy Condition
1 Limited Time Period USING expression of Figure 3

2 Random Sample USING expression of Figure 5

3 Biased Sample USING expression of Figure 7

4 Set of Other Users USING expression of Figure 9

5 Limited Number of Records USING expression of Figure 11

(a) The top table is a mapping table for the policy type and the
condition to be evaluated for a particular policy. The policy cones
teh using expression of the linked function.

Policy ID Record
1, 3 Record 1

2, 4, 5 Record 2
5 Record 3

1, 3, 4, 5 Record 4
1, 4 Record 5

1 Record 6
2, 4 Record 7
1, 2 Record 8
2, 4 Record 9

(b) The bottom table is an assignment of policies over a data set.

Figure 12: Each table shows an example of a complex

sharing policy applied to a data set.

CREATE FUNCTION create_complex_policy()
RETURNS void
$BODY$
BEGIN
CREATE POLICY complex_policy ON example_data_set
USING (eval_complex_policy(’example_data_set’));

END;
$BODY$
LANGUAGE plpgsql;

Figure 13: An example function to instantiate a complex

policy.

in Section IV). For each active policy, the condition would

be retrieved from the mapping table shown in Figure 12.

If all the conditions evaluate to true, then the function

will return true and the record will be shared. If any of

the conditions evaluate to false, the function will return

false and the record will be restricted.

Work has been done in the database community to de-

velop methods for implementing data sharing policies within

Hippocratic database systems [3]. Language constructs have

been created to define these fine grained access control poli-

cies with minimal complexity [4]. One goal for minimizing

the complexity of these policy representations is to reduce

the storage overhead on a database management system that

implements fine grained access control. In this paper, we

introduce a new method for storing policy meta data that

aims to further reduce the cost of storage.

III. USE CASE

Consider a new mobile application, Health Tracker Pro,

that uses a health monitoring device to record a user’s fitness

data. The purpose of this application is to not only help users

monitor their personal health, but also give them the ability

to share their personal health data with their doctor. Doctor’s

Figure 14: Example table containing Bob’s personal health

data recorded by Health Tracker Pro.

would use the Health Tracker Pro Dashboard application to

view health data shared by each of their patients.

The primary data recorded by Health Tracker Pro is stored

in a single table. This table has the following schema (using

PostgreSQL data types):

health_data(
time timestamp primary_key
heart_rate smallint not null
blood_sugar smallint not null
body_temp real not null

)

Health Tracker Pro uses a sampling rate of 20 times per

minute, or more precisely, once every three seconds. An

example subset of this data can be seen in Figure 1 for an

example user, Bob.

Bob would like to share some of his health data with

his doctor. However, he does not want to share all of the

data recorded by Health Tracker Pro. Bob only wishes to

share his data at certain times during the day. For example,

Bob would like to share his heart rate and body temperature

data while exercising, and blood sugar data while sleeping

and after eating a meal. Additionally, if Bob’s heart rate is

recorded to be outside of a selected window, he would like

his doctor to be notified. At all other times of the day, Bob

would like his personal health data to remain private.

The simplest approach to storing these complex privacy

policies would be by adding three new attributes to the

health data table as shown below:

health_data(
time timestamp pimary_key
heart_rate smallint not null
blood_sugar smallint not null
body_temp real not null
hr_private boolean not null
bs_private boolean not null
bt_private boolean not null

)

444

These attributes are simple Boolean values determining

whether the corresponding attribute for a row is private. Each

row may represent a unique policy, so the policy data will be

stored in the same table alongside the primary health data.

In the following sections, we will describe the Min Mask

Sketch data structure and implementation that can store these

privacy policies without using near as much space. We will

then discuss the pros and cons of this data structure when

compared to the simple method described here as well as

briefly mention another alternative approach to storing these

complex sharing policies.

IV. MIN MASK SKETCH

The Min Mask Sketch is a modified version of the Count

Min Sketch [2]. The Min Mask Sketch is stored as a two-

dimensional array of unsigned integers and uses a collection

of hash functions. The purpose of the Min Mask Sketch is

to efficiently store policies associated with items in a large

data set. When the sketch is first created, all elements in the

two-dimensional array are initialized to zero. When a new

item’s policy is inserted into the sketch, the item is hashed

by d different hash functions, where d is the number of rows

in the two-dimensional array. These hash functions return a

uniformly random value between 0 and w-1, where w is the

number of columns in the two-dimensional array. The policy

for the given data item is then inserted into a cell contained

in each row of the two-dimensional array at the particular

index calculated by the corresponding hash function. This

process is illustrated in Figure 15.

At time of insertion, the policy should be in the form of

an unsigned integer. We will refer to this unsigned integer

as the bitmask for that policy. The bitmask approach is very

simple. Each bit position in the bitmask corresponds to a

possible condition in the complex sharing policy associated

with a data item. If the bit at a particular position is 1, then

the condition corresponding to that bit position is active for

that item and should be applied when the data is shared. To

insert the policy value into a cell, a bitwise OR operation is

performed with the existing bitmask in the cell and the new

bitmask to be inserted. This is done to avoid overwriting

existing bitmasks in the sketch when a hash collision occurs

or when performing an update to an existing item. Inserting

a new item into the Min Mask Sketch is a straightforward

process. Updating an existing item presents new problems

which will be discussed in Section VI.

Using the running example from Section III, suppose the

least significant bit position in the bitmask corresponds to

making Bob’s body temperature information private, the next

highest order bit position corresponds to making Bob’s blood

sugar information private, and the next highest order bit

position corresponds to making Bob’s heart rate information

private. During exercise, Bob would like to share his heart

rate and body temperature information with his doctor. The

corresponding sharing policy for each data item recorded

Figure 15: The Min Mask Sketch

during his exercise session would be “010”. Meaning that his

heart rate and body temperature are freely being shared, but

his blood sugar has an active “private” condition associated

with it that should be applied during the sharing process.

Since the time attribute is the primary key for the health data

table in the example given in Section III, the time value for

each data item would be the argument passed into each hash

function.

When retrieving a policy bitmask for a given item, the

primary key for that item is hashed by all d hash functions

to get the indexes that should be checked for each row in

the two-dimensional array. The bitmask values at each index

are passed into a function that determines the number of 1’s,

or “active policies”, contained in each bitmask and returns

the bitmask with the minimum number of active policies

as the result. Due to hash collisions, this bitmask is only an

estimate for the actual bitmask associated with the given data

item. This estimate is bounded by the following equation

with probability c:

a ≤ â ≤ a+ εM (1)

Where a is the actual policy for a given item, â is the es-

timated policy, and ε is the error bound factor. This equation

has been formally proven by Cormode and Muthukrishnan

in the original paper describing the Count Min Sketch [2].

In Cormode et al. [2] M represents the sum of all of the

true frequencies in the Count Min Sketch. Because the Min

Mask Sketch uses bit positions and not frequency values,

the equivalent M is described in Equation 2 as the sum of

2 raised to the Hamming weight of each ai in the Min Mask

Sketch.

M =
w∗d∑

i

2weight(ai) (2)

Since this equation is known to be true, the estimate

for the policy associated with a given item in the sketch

will always be either the correct policy or contain a small

amount of extra 1’s in the policy. The design of the Min

555

Mask Sketch was done in such a way to err on the side of

caution assuming by default that all data is shared. When

the default behavior of the system is to not share data, the

errors in estimation due to the probabilistic nature of the Min

Mask Sketch may result is sharing data that is not meant to

be shared. This may not be desirable behavior for many use

cases.

c, the confidence interval for the error bound, and ε,the

error bound factor, can be chosen at creation time to fit

the sketch with the needs of the particular application. The

smaller the error bound factor, and the greater the confidence

interval, the more space is needed for the Min Mask Sketch

to deliver these guarantees. This is because the width and

depth of the two-dimensional array used for the Min Mask

Sketch are determined based on these two parameters:

w = �e
ε
� (3)

d = ln(
1

1− c
) (4)

Cormode and Muthukrishnan did extensive theoretical

analysis, proving that when the sketch is sized in this manner

and d hash functions are used, (1) holds true. The size of

the resulting Min Mask Sketch does not grow as a function

of the data set, it is completely fixed based on the tuning

of c and ε. However, ε should be chosen with the number

of insertions kept in mind. Since the upper bound for the

estimation error is a result of multiplying the number of

insertions by the error bound factor ε, a value for ε can be

chosen to tune this upper bound to a precise point based

on the estimated number of insertions that will occur in the

Min Mask Sketch. If ε is chosen to be too large compared

to the number of insertions, the upper bound for the error

in estimating a policy will grow significantly and the Min

Mask Sketch will no longer be useful.

V. IMPLEMENTATION

Our implementation of the Min Mask Sketch was done

by creating an extension for PostgreSQL version 9.6 1.

The extension was written in C and contains four major

components:

1) Definition of the Min Mask Sketch data type.

2) Functions to create a new Min Mask Sketch object.

3) Functions to add an item into the Min Mask Sketch.

4) Functions to retrieve the bitmask for a given item in

the Min Mask Sketch.

The first component of the extension was implemented

by creating a simple C structure containing three fields: two

integer variables to hold the sketch depth and sketch width,

and an array of integers to represent the sketch itself. This C

structure is then mapped to a PostgreSQL data type called

“mms” that can be attributed to a column in a CREATE

1The implementation is available on GitHub at https://github.com/
oudalab/mms

TABLE statement. For example, to create a table containing

a column with the Min Mask Sketch data type, the following

SQL can be executed:

CREATE TABLE example (
my_sketch mms

);

Creating this table does not automatically instantiate a

new Min Mask Sketch object. This is where the second com-

ponent of the extension is required. In order to instantiate

a new Min Mask Sketch object, we created a user-facing

function called “mms” that accepts two parameters. These

parameters are floating point numbers corresponding to the

error bound and confidence interval for the sketch. These are

optional parameters with default values of 0.001 and 0.99

respectively. The error bound and confidence interval are

then used to determine the sketch depth and sketch width.

This process was discussed in detail in Section IV. The

required amount of memory for the sketch array is then

allocated and each value in the sketch is initialized to 0. The

new Min Mask Sketch object is then returned. In order to

insert a new Min Mask Sketch object into the example table

created above, the following SQL code can be executed:

INSERT INTO example VALUES(mms());

The third component of the extension handles adding new

items into the sketch, and was implemented by creating a

user-facing function called “mms add”. This function takes

three parameters: the sketch to which the new item should

be added, the new item itself, and a bitmask to identify

the policy that should be applied to the item when being

shared (as described in Section IV). The new item is first

hashed, using MurmurHash3, to d different locations in the

sketch, where d corresponds to the sketch depth calculated

at creation time. The values computed by the hash functions

correspond to indexes in the sketch array. A bitwise OR

operation is then performed between the existing value in

the sketch at each index and the new bitmask value given

as the third function argument. This successfully adds or

updates the item accordingly. An example SQL statement

to add a new item into a Min Mask Sketch object is given

below:

UPDATE example SET my_sketch =
mms_add(my_sketch, "abc"::text, 6);

Note in the example above that the new item is of type

“text”, but any data type is supported, and the integer “6”

corresponds to the binary representation “110”, meaning two

conditions are active for that item. It is possible to update

an item to use a new policy, however, the update must only

result in bits changing from 0 to 1, not the reverse. In other

words, new conditions for a specific row can be set to active

but new existing active conditions cannot be deactivated.

This limitation is discussed in more detail in Section VI.

The fourth component of the extension was implemented

by creating a user-facing function to retrieve the bitmask

associated with a given item in the data set. This function

666

is called “mms get mask” and takes two parameters. The

first parameter is the sketch in which the item is stored,

and the second parameter is the item in question. This

function hashes the given item to obtain the d different

hash values corresponding to the indexes in the sketch that

must be checked. The bitmasks at each index are retrieved

from the sketch and the minimum mask value is calculated

(as described in Section IV). This minimum mask value is

then returned to the user as the policy for that data item.

An example SQL statement to retrieve the bitmask value

associated with an item in a Min Mask Sketch is as follows:
SELECT mms_get_mask(my_sketch, "abc"::text)

FROM example;

This query returns the bitmask value associated with the

item “abc” which can then be used to determine the policy

that should be applied to the row identified by “abc”. If the

item does not exist in the data set, this function will return

0.

VI. ANALYSIS

After analyzing this approach to store complex sharing

policies efficiently, several issues have arisen that will be

discussed in this section. The first issue is the limitation that

the Min Mask Sketch has in regards to handling updates and

deletions. The Min Mask Sketch approach only succeeds in

handling updates that result in changing bits from a 0 to a 1

in the bitmask and not the reverse. The sketch cannot handle

deletions at all. This is due to the fact that when retrieving

a policy for a given data item, the policy corresponding to

the minimum number of 1’s is chosen. Therefore, if a policy

was updated from “111” to “001”, and one of the indexes

calculated by the hash functions collided with a second item

in the sketch, this could potentially ruin the accuracy of that

second item. If the second item involved in the hash collision

had a policy of “101”, one of its d bitmasks would be

changed to “001” by the update to the first policy, resulting

in a new minimum bitmask for the second item that is

inaccurate. Deleting an item is a problem for the exact same

reason, because it results in bitmasks going from a higher

number of 1’s to a lower number of 1’s. The Count Min

Sketch and other modifications to the Bloom Filter such as

the Counting Bloom Filter are able to handle updates and

deletions using increments and decrements [5]. The Min

Mask Sketch, however, does not inherit this functionality

because performing a bitwise logical OR operation between

two integers is not the same as incrementing and thus

information can be lost when a hash collision occurs. One

approach to solving this problem would be by choosing the

average bitmask value instead of the minimum, however

this would result in a looser error bound and thus more

inaccuracies.

The second issue with this approach to storing complex

policies is the fact that the simplest way of storing the

policy does not add a large amount of overhead, so the

Figure 16: Comparing the space efficiency of the Min Mask

Sketch vs the log-based storage approach.

introduction of inaccuracies when applying sharing policies

may not be worth it. When considering the example from

Section III, one entry in the health data table can be stored

in 16 bytes (excluding the three additional columns added

to store policies), while the policy data can be stored in

3 bytes using the simple approach of adding three extra

columns. With an overly generous assumption that the Min

Mask Sketch approach could store all of the policies in a

negligible amount of space, this would result in an 18.75%

space efficiency increase. This efficiency is reasonable, but it

should be noted that this percentage value is an upper bound

to the space efficiency increase for this example and would

only shrink as more health data was recorded by the Health

Tracker Pro app. Since the Min Mask Sketch approach

brings potential inaccuracies in the estimation of policies,

it should result in a space efficiency increase large enough

to warrant those inaccuracies. If a more complex policy were

used that would require even more data to represent it than

the primary data itself, the Min Mask Sketch approach to

storing these policies would become much more feasible, but

practical examples that involve such large complex policies

are scarce.

The final issue that will be analyzed here is related to

the frequency of policy changes within a large data set

and their role in the feasibility of the Min Mask Sketch

approach. Consider the running example from Section III.

Based on Bob’s wishes, the policies associated with each

row would only change a few times per day. This means

that most rows in the health data table will contain the same

complex policy. When there are very few policy changes, an

alternative method for storing these policies could be used

that is based on storing a policy for a range of items in the

table. We will call this approach the log-based approach.

For example, if Bob’s sharing policy only changes 6 times

777

per day, 6 entries in a log table could be inserted, where

each entry contained a timestamp, and a Boolean value for

each condition. The time between each entry in the log table

would be the range for those policies to be applied. When

determining the policy for a given data item, the log table

could be referenced and the range of times given by the

different timestamps would determine which policy should

be applied to that item. This approach is much more efficient

than other approaches when the frequency of policy changes

is low.

The size of the log table grows as a function of the number

of policy changes within a data set. Figure 16 shows the

storage space used for the Min Mask Sketch compared to the

space used for the log-based approach for a variety of policy

changes based on the running example from Section III. In

this graph, the default error bound factor and confidence

interval were used (0.001 and 0.99 respectively). As one

can clearly see, the log-based approach outperforms the Min

Mask Sketch approach for the Health Tracker Pro example

until roughly 1250 policy changes occur in the data set. Also,

the Min Mask Sketch approach introduces inaccuracies due

to the probabilistic behavior of the data structure, therefore,

the Min Mask Sketch storage approach would need to

significantly outperform the log-based approach for it to be

a practical choice.

VII. CONCLUSION

Complex data sharing policies are becoming increasingly

common as more applications are recording data and sharing

it across a large network of devices and people. We have

presented the Min Mask Sketch approach to efficiently

store these policies. We have also described our imple-

mentation for the Min Mask Sketch within the PostgreSQL

9.6 database management system. After a detailed analysis

of some of the key factors involved in storing complex

sharing policies, we have seen that there are several issues

with this probabilistic approach to storing complex sharing

policies. We have discussed these issues in detail in order

to understand the fundamental questions that need to be

answered when developing solutions for storing complex

sharing policies. Some of the problems discussed in the anal-

ysis section can be solved through future work and design

changes, while other problems require a better understanding

of how data might be shared in the future in order to solve.

VIII. ACKNOWLEDGEMENTS

We would like to thank Sai Ram Sunkara for his help

during the initial implementation.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Communications of the ACM, vol. 13, no. 7,
pp. 422–426, 1970.

[2] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal
of Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[3] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt, “Limiting disclosure in hippocratic
databases,” in Proceedings of the Thirtieth international con-
ference on Very large data bases-Volume 30. VLDB Endow-
ment, 2004, pp. 108–119.

[4] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and
W. Rjaibi, “Extending relational database systems to automat-
ically enforce privacy policies,” in Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on.
IEEE, 2005, pp. 1013–1022.

[5] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM
Transactions on Networking (TON), vol. 8, no. 3, pp. 281–293,
2000.

888

