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Abstract

Simpson’s paradox is the phenomenon that a trend of an as-
sociation in the whole population reverses within the subpop-
ulations defined by a categorical variable. Detecting Simp-
son’s paradox indicates surprising and interesting patterns of
the data set for the user. It is generally discussed in terms of
binary variables, but studies for the exploration of it for con-
tinuous variables are relatively rare. This paper describes a
method to discover Simpson’s paradox for the trend of the
pair of continuous variables. Correlation coefficient is used
to indicate the association between a pair of continuous vari-
ables. We use categorical variables to partition the whole data
set into groups. Our algorithm’s goal is to find the sign re-
versal between the coefficient correlations measured in the
group relative to the original entire data. We show that our
approach detects cases in real data sets as well as synthetic
data sets, and demonstrate that our approach can uncover the
hidden surprising pattern by detecting occurrences of Simp-
son’s paradox. This paper also proposes an approach that ex-
ploits sampled data for early Simpson’s paradox detection.
We show the running time for the algorithm by examining
through the combination of different conditions.

Introduction
Discovering insights from data is a crucial aspect of data sci-
ence. The public and overseers are increasingly scrutinized
because important data sets contain many surprising results
that are left unexplained or unexplored (Doshi-Velez et al.,
2017). Simpson’s paradox is one of the most well-studied
surprising trends in data. Developing an automated method
for the detection of this paradox will help industries scruti-
nize the data sets that effect everyday life.

Simpsons paradox is the reversal of the relationship be-
tween a pair of variables when conditioned on a third vari-
able. The phenomenon may occur within all of the sub-
groups or for some. We categorize cases of Simpson’s para-
dox into two cases, based on the type of trend to be reversed:
classification, when the trend is the relative rates of a binary
outcome in two groups and regression, when the trend is
based on the sign of a correlation between two variables.

Figure 1 shows a synthetic example of Simpson’s para-
dox. A black-dotted line shows a regression line over the
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Figure 1: Simpsons’ paradox occurring in an example data
set. Full weight trendlines are for subgroups and the dashed
line is the population trend

full data set, indicating positive correlation. However, two
subsets of the data sets, shown as red-circles and blue-x, in-
dividually have negatively sloped regression lines. Condi-
tioning on this symbol type, we see an opposite relation be-
tween the two attributes. If analysts reach conclusions based
on data that has such disparities, lives and livelihoods may
be affected.

While visualizations can help analysts discover the exis-
tence of this paradox, as data sets are increasing in dimen-
sionality and growing in size, we can no longer rely on visual
inspection. This motivates development of robust automated
detection of Simpson’s paradox.

In this paper, we propose an algorithm to detect Simpson’s
paradox for the regression case and demonstrate its empiri-
cal utility on three data sets. We then show the performance
of the algorithm over samples of full data sets and large data
sets.

Background
A famous example of Simpson’s paradox is in relative rates
of graduate admission by gender that reverses when de-
partments are considered individually (Bickel et al., 1975).
Simspon’s Paradox has also been observed in drug dosage



to outcome analyses where both genders show negative
trends, but gender differences drive a populaiton-wide posi-
tive trend (Kievit et al., 2013).

The phenomenon is well-studied in statistics (Pavlides
and Perlman, 2009; Chen, Bengtsson, and Ho, 2009; Ler-
man, 2017) and through the lens of causality (Pearl, 2011;
Hernán, Clayton, and Keiding, 2011; Arah, 2008). The as-
sociation between two variables is considered and studied
in Alin (2010), and the causal-theoretic view point is ex-
amined. Bandyoapdhyay et al. (2011) also argue the causal
account of the Simpson’s paradox and provide another per-
spective comparing with classic work by Blyth (1972) for
the logic of Simpson’s paradox.

Generic detection of Simpson’s Paradox has been done
with respect to available discrete attributes in the data (Guo,
Binnig, and Kraska, 2017; Freitas, 1998) including with
ranking occurences (Fabris and Freitas, 2000) and clus-
ters discovered within the data Kievit et al. (2013). Tech-
niques for visually detecting Simpson’s paradox (Armstrong
and Wattenberg, 2014) and more general surprising re-
sults (Rücker and Schumacher, 2008) also exist. Simpson’s
paradox’s impact on learning has been studied with respect
to reliability of association rules (Froelich, 2013).

Methodology
Simpson’s paradox has been studied in two main forms: rel-
ative rates and linear trends. We focus on the latter and use
linear correlation to measure a trend between two variables.

Detecting Simpson’s Paradox
We formally describe the algorithm in Algorithm 1. Given
a data set, we assign each column to one of two lists: (1)
group-by attributes for conditioning over (integer or nonnu-
merical columns ) ; (2) candidate attributes for computing
the relationships (continuous valued columns).

For a data set with d candidate attributes we compute the
d × d matrix of correlation coefficients. Next, we partition
the data set by conditioning on each of the C group-by at-
tributes and compute an additional d × d correlation matrix
for each of the kc values of attribute c. In total, we compute∑C

c=1 kc +1 correlation matrices of size d× d. An example
from our synthetic data set is shown as Table 1.

Finally, for each pair of candidate attributes (the upper
halves of the correlation matrices), we compare the sign in
each of the

∑C
c=1 kc subgroup-level matrices to the sign of

that pair in the whole data. For each sign reversal found,
we record the correlation of whole population(allCorr), re-
versed correlation value(revCorr), the pair continuous at-
tributes (attr1= a1, attr2= a2) that exhibit the reversal, the
categorical attribute(catAttr, c), and the subgroup value, s.
The output of the algorithm is a table such that in each row:

sign [corr(a1, a2)] = sign [corr(a1, a2|c = s)] (1)

Simpson’s Paradox in Partial Data
We propose that subsampling the data may allow less
computationally expensive detection than computing in the

Algorithm 1 Simpson’s Paradox Detection Algorithm

INPUT: Relational Table R
con col← detectTypes(R)
cat col← detectTypes(R)
for all (col1,col2) ∈ con col do

corrMatrix1← computeCorrelation(col1,col2)
end for
for col← cat col do

subgroups← R.groupby(col)
for group← subgroups do

for all (col1,col2) ∈ con col do
corrMatrix2← computeCorrelation(col1,col2)

end for
if isReverse(corrMatrix1, corrMatrix2) then

SP result← subgroup info
end if

end for
end for

Attribute 1 Attribute 2

Blue Attribute 1 1.0000 −0.6190
Attribute 2 −0.6190 1.0000

Red Attribute 1 1.0000 −0.6160
Attribute 2 −0.6160 1.0000

Table 1: Per-group Correlation matrices for the synthetic
data set.

whole dataset. We use subsamples sizes of 10%, 30%, 50%,
60%, and 90% of records to assess the accuracy of our ap-
proach. For each subsample size, we draw five samples and
run our Simpson’s paradox detection algorithm. Using the
algorithm’s result on the whole dataset as the ground truth,
we evaluate the performance of the algorithm on the subsets
as shown in Figure 2.

The experiment indicates that our algorithm can achieve
a high F1 score in a subset of the data, implying that our
method has potential utility in streaming data scenarios.

Experiments
We perform experiments on a synthetic data set and two data
sets from University of California, Irvine machine learning
repository (Lichman, 2013): Iris (Fisher, 1936) and Auto
Miles per Gallon (Quinlan, 1993).

Synthetic Data Set

As a preliminary validation of our algorithm, we generate
100 records of synthetic data as shown in Figure 1. We man-
ually set means and subgroup-shared covariance matrix for
generating samples from a multivariate normal distribution
that induces the Simpson’s paradox. As shown in Table 2,
our detection algorithm finds full Simpson’s Paradox for
color.



Figure 2: The F1 score when running the Simpson’s paradox
over random samples of data.

allCorr attr1 attr2 revCorr catAttr subgroup
0.7710 attribute 1 attribute 2 −0.6190 color b
0.7710 attribute 1 attribute 2 −0.6160 color r

Table 2: Result from our algorithm for the synthetic data set.
Equation 1 holds on each row

Iris Data Set
The Iris data set has 150 records of 5 attributes: sepal length,
sepal width, petal length, petal width, and species. The
first four attributes are continuous valued measurements and
species is categorical with three values.

Our algorithm detects nine trend reversals, shown in the
Table 3. Simpson’s Paradox exists with respect to three pairs
of measurements ( sepal length vs. sepal width, sepal width
vs. petal length, and sepal width vs. petal width), since all
three species have opposite trends from the population as
visualized in Figure 3.

Auto MPG Data Set
From the Auto MPG data set, we select three continuous
(mpg, acceleration, and horsepower) and three categorical
attributes (cylinders, model year, and origin) and retain only
the 392 complete records. As shown in Table 4, we detect
six occurrences of Simpson’s paradox; four with respect to
cylinders and two with respect to model year.

allCorr attr1 attr2 revCorr catAttr subgroup
−0.1090 sepal length sepal width 0.7470 class setosa
−0.1090 sepal length sepal width 0.5260 class versicolor
−0.1090 sepal length sepal width 0.4570 class virginica
−0.4210 sepal width petal length 0.1770 class setosa
−0.4210 sepal width petal length 0.5610 class versicolor
−0.4210 sepal width petal length 0.4010 class virginica
−0.3570 sepal width petal width 0.2800 class setosa
−0.3570 sepal width petal width 0.6640 class versicolor
−0.3570 sepal width petal width 0.5380 class virginica

Table 3: The output from our algorithm for Iris data set.
(Equation 1 is true)

allCorr attr1 attr2 revCorr catAttr subgroup
0.4230 mpg acceleration −0.8190 cylinders 3
0.4230 mpg acceleration −0.3410 cylinders 6
0.4230 mpg acceleration −0.0510 model year 75
0.4230 mpg acceleration −0.0510 model year 79
−0.7780 mpg horsepower 0.6210 cylinders 3
−0.7780 mpg horsepower 0.0130 cylinders 6

Table 4: The output from our algorithm for Auto MPG data
set, (Equation 1 is true for each row)

10 attr. 20 attr. 30 attr.

100K
32 Clu. 4.383 11.499 28.723
256 Clu. 5.144 14.512 33.954
1024 Clu. 10.797 24.270 54.154

500K
32 Clu. 5.544 16.033 38.259
256 Clu. 6.815 18.703 44.084
1024 Clu. 12.272 29.723 63.196

1M
32 Clu. 6.855 22.303 52.011
256 Clu. 8.165 23.965 55.423
1024 Clu. 13.811 34.985 76.289

Table 5: Running time (in s) of detection algorithm

Time Evaluation
We implement our algorithm in Python and run in a Jupyter
Notebook on a MacBook Pro with a 2.7 GHz Intel Core i5
processor and 8GB 1867MHz DDR3 RAM to evaluate time.

We keep the two continuous attributes and a categori-
cal attribute that induce Simpson’s paradox. In the Table 5,
32 clusters means that there are 32 subgroups partitioned
by the categorical attribute. To evaluate performace in var-
ied data sizes, we generate equal numbers of extra continu-
ous attributes (random Gaussian) and categorical attributes
(uniformly random integers). We generate synthetic data set
three times for each test case and report the average run time.

There are three important factors that influence the run
time of our algorithm from our experiments: the total num-
ber of attributes, the total number of records, and the number
of levels for each categorical attribute.

Discussion
In the analysis of real data sets, we found instances of both
full (trend reversal for all values of the conditional variable)
and partial (reversal for some values) Simpson’s Paradox.

We noted that in some detection of Simpson’s Paradox,
the relationship between two continuous attributes in the
whole data set was a strong, while the subgroup relation-
ship was reversed and weak, for example 6 cylinders line in
Table 4). This suggests that a distance-based detection may
be important in an approximate algorithm.

Conclusions and Future Work
We present a new approach for detecting Simpson’s paradox
based on the correlation comparison. Our case study on the
empirical data sets showed that our algorithm is effective.



(a) sepal length vs. sepal width (b) sepal width vs. petal length (c) sepal width vs. petal width

Figure 3: Simpson’s paradox in the Iris dataset. Dashed lines show the overall trends, solid show the individual species.

Further, we explore the feasibility of detecting Simpson’s
paradox in subsampled data as a preliminary step toward
improved scalability. Empirical runtime results confirm that
the total number of continuous attributes and categorical at-
tributes, the total number of records, and the levels for each
categorical attribute influence the running time of our algo-
rithm from our experiments.

In our current implementation, we partition the data only
once and iterate the partition by different categorical at-
tributes on the entire data set. Grouping on two or more
columns simultaneously may be necessary to thoroughly de-
tect all surprising results of this form. We want to develop
new visual and interactive techniques that use Simpson’s
paradox to guide a user’s data exploration.
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